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ABSTRACT

Rotating machinery such as gears plays an inportant
role in control of an aircraft. The condition of this
machinery is a key ingredient to both platform safety and
m ssion success, especially in mlitary operations. The
purpose of the thesis research is to establish a vibration
threshold level for each particular gear in CH53 aircraft
such that, while mnimzing in-flight risk, a negligible

false alarmrate i s obtained.

This study uses Box-Jenkins time series nodeling
(ARMA) with regression, Mahal anobi s distance netrics,
goodness-of -fit tests and the Bonferroni correction to
explore the structure of the historical acqui sition
datasets for particular gear type and aircraft, to set
vibration threshold values for “Warning” and “Alarni
situations. Although 28 datasets could not be nodeled
because of snall sanple sizes, the other 224 data sets were
successfully nodeled using ARMA with regression nodeling
techni que. The Mahal anobi s di stance netric was then used to
set a threshold value of “Warning” and “Alarni for each
gear type. These threshold values were then checked wth
new data and 200 outliers for “Warning” and 69 outliers for
“Alarnf were detected. These outliers mght be evaluated as
fal se al arns.
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EXECUTI VE SUMVARY

The purpose of this study was to establish a vibration
threshold level for each particular gear in CH53 aircraft
such that, while mnimzing in-flight risk, a negligible
false alarm rate is obtained. Aircraft safety is a very
inportant issue to the mlitary. Every precaution should
be taken to mnimze risk to the aircraft crew. The basic
concept for threshold setting is to pick a threshold val ue
hi gh enough such that the worst aircraft, while still

heal t hy, would not give a false alarm

The data used in this study was supplied by Goodrich
Corporation Fuel & Utility Systens. The data consist of
23,187 acquisitions and 20 attributes for 63 gear types and
four different tail-nunbered CH53E aircraft. The data
i ncludes seven condition indicators! (Cl) (See Table 1 in
Chapter 11) for each gear type. To calculate a threshold
value, first, 252 individual data sets were created from
the entire data for each particular gear and tail nunber.
Each of the seven Cls were considered as a univariate tine

seri es.

Box-Jenkins Autoregressive Myving Average Moddels
(ARMA) were used to nodel each of these univariate tine
series. Examining the tinme plots for each Cd, it was
observed that alnost all of them were plausibly stationary.
The autocorrelation and partial autocorrelation plots were
then exam ned to determne the order of Autoregressive (AR

1 “Condition indicator (Cl) is nothing nmore than an algorithm For
exanpl e, residual kurtosis neasured the kurtosis of the tine donain
signal after the mmjor gear and shaft rates have been renoved”
(Goodrich Corporation Fuel & Uility Systens, 2003).

Xi i



and Moving Average (MA) conponents. Based on these plots

ARVA(1,1) nodels were suggested. Then we added the torque
effect as a regression variable to our nodels because it
was believed that torque affected the Cls. The standardized
residuals of each C  npdel were used to set threshold

val ues of “Warning” and “Al arni.

Qur analysis was based on detecting any unusual |eve
in CI values. For this purpose, we used the Mhal anobis
di stance, which is a nultivariate distance netric. This
anal ysis provided insight about the expected range of the

di stance netric for a specific healthy gear type.

Next, we needed to find the distribution, which would
fit to each Mahal anobis distance data set. Mst of the
hi stogram plots for the Mhal anobis distance data sets for
a particular gear type and tail nunber |ooked as if they
canme from exponential distributions.

However, we applied Chi-Square and Kol nogorov- Sm rnov
goodness-of-fit to verify if the Mahal anobis distance data
sets cane from exponential distributions. Since nore than
one goodness-of-fit test was perforned, in order to control
Type | error, we applied the Bonferroni nultiple conparison
correction which assured an overall Type | error no greater
than 0.05. Using the Bonferroni adjusted goodness-of-fit
tests, 84% of the data sets using Chi-square and 87.5% of
the data sets using Kol nbgorov-Smrnov produced non-
significant results with respect to the null hypothesis
speci fying the exponential distribution. Therefore, we set
threshold values for “Warning” and “Alarnf using the
critical values of the exponential distributions of those

data sets. The basic concept for threshold setting was to

Xi v



pick a threshold high enough that the worst aircraft, while
still healthy, would not give a false alarm For this
reason, as a rule of thumb, we used a 0.999 quantile |eve
for “Warning”, and a 0.999999 quantile level for “Alarn

t hreshol d | evel s.

XV
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. 1 NTRODUCTI ON

A BACKGROUND

The United States Navy, in association with Goodrich
Corporation Fuel & Uility Systems, is continuously seeking
ways to decrease the false alarm rates for “Warning” and
“Alarnmt in different types of aircraft using the vibration
data coll ected during the operational flights.

Rot at i ng machi nery such as punps, gears and
transm ssions are wused in vehicles, ships and aircraft.
These conponents support critical functions that aid in
power , stability, propul sion and control of t hese
platforns. The health of this machinery is a key ingredient
to both platform safety and m ssion success, especially in
mlitary operations.

Conmponents subject to cyclic fatigue conditions

develop cracks in critical high-stress |ocations
as a result of pre-existing nmachining or

manuf act uri ng-i nduced defects, poor operati ng
conditions (loss of lubrication, etc. leading to
fretting damage) , foreign obj ect damage,

environnental factors (corrosive environnents and
resulting pitting danmage) or excessive | oading.
Such interactions, either between new conponents,
new and worn components, and healthy or
fati gued/ damaged conponents, coupled wth the
difficulty in determning exact crack initiation
sites nmkes it difficult to predict remining
conmponent life. Practical real-tine optical or
strain neasurenent using conventional sensor
t echnol ogi es has not proven reliable for
production purposes (Goodrich Corporation Fuel &
Uility Systens, 2003).

Techni ques designed to assess the health of this
machi nery use conponent-|level state-awareness indicators

obtained from analyzing the vibration signal. These

1



indicators are categorized as either normal, warning or
alarm There are sone reliable indicators that already are
used to ascertain the health of each conponent and the
correspondi ng assenbly (group of conponents) at a specific
instance in tine. Despite the inprovenent in probability
of detection and false alarm rate, current heal th
assessnments do not relate previous and renaining conmponent

life.

There are two nechani cal diagnostic tests that can be
performed. The first is a usage-based test. The second is
measur enent - based. The wusage-based test calculates the
wor st -case damage that a new part could accunul ate before
failure. The real-tinme damage is recorded and reflects
actual flight conditions such as airspeed and nmaneuvers.
The proportion of real-tine damage to worst-case damage is
considered the usage of the aircraft conponent. Thi s
met hod does not account for manuf acturing defects,
corrosion or faulty maintenance. On the other hand, the
measur enent - based test uses an acceleroneter close to the
conponent that neasures the vibration felt by that
conponent . This test is used to infer the current health
of the conponent. Qur analysis relies on neasurenent-based
dat a. The following describes the process by which
conmponent health is measur ed.

An acquisition takes configuration data which

consists of gear, bearing and shaft information,
and calculates a health index (H) based on a

nunber of Cls. The gear information consists of
t he nunber of teeth, the RPM the shaft on which
it is munted and sensor. The health of the
conponent is calculated (currently) by taking
consensuses of Cls wused for that part. For
exanple, in the case of gears, 7 Cl's (See Table
1 in Chapter 11) are wused. If three Cls are

2



greater than three standard devi ations above the
normal nean |level, the conponent is considered in
“Warning” and if there are 3 Cls greater than 6
standard deviations, the conponent is in alarm
(Goodrich Corporation Fuel & Uility Systens,
2003).

A false alarm occurs when the health index (H') is in
warning or alarm when it should be in nornal. One of the
nost inmportant issues is to mnimze the nunber of false
alarnms during operations. But on the other hand, undetected
faults can result in catastrophic failures. There mnust be

a bal ance between these objectives.

In this thesis, we will deal with the gear data and
our goal is to determne a threshold value of *“Wrning” and
“Al ar n? for each  particul ar gear of CH53E type
helicopters, and to obtain reasonable false alarmrates.

B. OBJECTI VE

The purpose of the thesis research is to establish a
vi bration threshold level for each particular gear in the
CH 53 aircraft such that, while mnimzing in-flight risk,
a negligible false alarmrate is obtained.

This thesis will benefit the mlitary by ensuring a
lower false alarm rate on its helicopters. This will help
to decrease ownership costs, which include the replacenent
and/ or mai ntenance of any helicopter conponent as a result

of a false alarm

The vibration data for CH 53 helicopters was provided
by Goodrich Corporation Fuel & Uility Systens. The data
was collected collected between July 1, 2001 and Septenber
1, 2003 during operational tests and it includes different
Cls related to acceleroneters and gears for each specific

3



tail nunber . The entire dat a consi sts of 23,187

observations on 20 attri butes.

C. SCOPE

Hel i copter safety is a very inportant issue to the
mlitary. The lives of the crew on the helicopter are
preci ous and every precaution to mnimze risk while flying
should be taken. A naive nodel would set a very |ow
threshold level to ensure that no failure occurs in flight.
This nodel is inpractical due to cost constraints. A |ow
threshold would require frequent replacement of the
conponents of the helicopter, at a high <cost. The
t hreshol ds nust be set high enough such that a false alarm
is a rare event. Therefore, the goal of this thesis is to
determine if a threshold l|level exists for each particular
gear in an aircraft such that, while mnimzing in-flight

risk, a negligible false alarmrate is obtained.

D. COURSE OF STUDY

This thesis is conprised of four chapters. Chapter 11
reviews the previous work by the Goodrich Corporation
Fuel &Utility Systens (Bechhoefer, 2003) and describes the
dataset wused for the analysis. It also explains the
statistical nodels and techniques used for the study.
Chapt er 1] describes univariate Box-Jenkins (ARMA)
nodeling wth regression analysis, Mahal anobis netric
anal ysi s, goodness-of-fit test analysis and the Bonferroni
correction procedure. Chapter |V sunmarizes the concl usions
of the analysis and presents reconmendations for further

st udy.



1. DATA AND METHODOLOGY

A PREVI QUS STUDY AND DATASET

1. Previ ous Study

Data acquisitions are nade by the Integrated
Mechani cal Di agnostic-Health and Usage Managenent Systens
(IMD HUVMB) installed on CH53 aircraft. An accel eroneter
mounted closest to the conponent sends a signal that is
used to neasure the vibrations of the conponent. The
acquired vibration data is then processed in the vibration
processing unit (VPU). The VPU is used to calculate a H
based on Cls. The VPU can process up to eight channels at a
tinme. Each channel process four seconds of acquired data
in about one mnute (Goodrich Corporation Fuel & Uility
Systens, 2003).

A desired vibration threshold setting for each
particular gear is high enough so that even a healthy
aircraft with the nost aged gears does not indicate false
alarms. One nethod for setting the threshold values for
warning and alarmis to nodel the variance between aircraft
and to add a correction for different predefined ranges of
torque (torque bands). Initially, the |east squares nethod
is applied to the C values which are assumed to be
random y sanpl ed from a seven- di nensi onal nor mal
di stribution. This nmethod uses the data coded into an
information matrix format organized by aircraft type and
torque bands. After the least squares fit nethod 1is

applied, the estimated condition indicators (CI) and the

sanpl e variance for each Cl are calculated. An adjustnent

is made for additional components of variance arising from
5



selection of the sanple’'s aircraft from the popul ation.
These cal cul ati ons use assunptions of normality,
i ndependence and honoscedasticity. A Cl is considered to be
in a “Warning” state when its value is three standard
devi ati ons above the nean. The conputation of the standard
deviation includes an adjustnent for variability between
aircraft and between torque bands: the value of three is
chosen from Nornmal theory. Simlarly, a Cl is considered to
be in an “Alarnf state if the value is six standard
devi ati ons above t he mean (Bechhoefer, per sonal
conmuni cation, Cctober 01, 2003).

The H of a conponent is calculated by taking a
consensus of a particular part’s Cls. As in the case of
gears, there are seven Cls to take into account. These
seven Cls for each particular gear are given in Table 1

Condi ti on | ndi cator Nane Vari abl e Name

Resi dual Kurtosis Resi dual _kurtosis

Resi dual Root-Mean- Square (RM5) | Resi dual _rns

Cear Distributed Fault Gear D sFaul t

Frequency Modul e Peak-t o- Peak f nP2P

Si deband Modul ation 1 sm1
Si deband Modul ation 2 sm 2
Si gnal Average Rati o RVMS si gAvg_rns

Table 1. List of Seven Cls for Each Particul ar Gear

If three of the seven Cls exceed the nornal nean | evel

by three standard deviations or nore, the conponent is in a

6



“Warning” state. Simlarly, if three of the seven Cs
exceed the normal nean level by nore than six standard
devi ations, the conponent is in an “Alarnmi state. The study
shows that visibly danaged parts typically have Cl val ues 6
to 8 standard deviations larger than the normal nean |evel.
Severely danaged parts have Cl values which are at |east 12
standard devi ations above the normal nean |evel (Goodrich
Corporation Fuel & Utility Systens, 2003).

The current approach, however, nakes assunptions about
the data that are untenable. The assunption that each C
follows the normal distribution (conditional on aircraft
and torque bands) has not been tested. The creation of
torque bands discards sone information; presunmably, by
considering torque to be continuous, we can better exploit
t hat dat a. Most seriously, the current approach’ s
conputations assune that the data are |ike independent
random sanples, whereas in reality there is a strong
el ement of tinme-dependence within each set of data (See
Chapter 111).

2. Data Used in the Anal ysis
The data set consists of 23,187 acquisitions and 20

vari abl es. These vari abl es are:

. Tai |l Nunber
. Accel eronet er Nane
. Tor que

. Gear Nane

. CGear | ndex
. Accel eroneter Signal to Noise Ratio (SNR)
. Accel eronet er Root - Mean- Squar e ( RVS)

. Accel eronmeter d i pping
7



. Accel eronet er Low Frequency | ntercept

. Accel eronmet er Low Frequency Sl ope

. Accel er onet er Anal og-to-Digital Converter
(ADC) Bits Used

. Accel eromet er Dynam ¢ Range

. Resi dual Kurtosis

. Resi dual RMS

. Gear Distributed Fault

. Frequency nodul e peak to peak
. Si de Modul ation 1-2

. Si gnal Average RVB

Tail: This variable consists of the tail nunber of each
aircraft for each acquisition. Table 2 provides a list of

t he sanpl e sizes for each tail nunber.

Tai |l Nunber | Total Acquisitions
162494 5934
163075 2437
163086 3461
164539 11335

Tabl e 2. Nunmber of Acquisitions for Each Tail Nunber

Accel eroneter Nane/Part: The dataset includes acquisitions
from 21 different accel eroneter nanmes and part nanes, which
are represented in Table 3.



Accel eronmeter Name | Accel eroneter Part | Nunmber of Acquisitions
AGBAf t DTA30 1532
AGBFwd DTA29 2681
| GBI nput DTA32 52

| GBQut put DTAO7 1392
M3BRear DTA23 1062
No2l nput DTA12 3186
QG | Cool er DTA22 354
QG | Cool er TakeOr f DTA28 354
Por t | nput Hanger DTA13 609
Por t Mai n DTA18 850
Por t NGBl nput DTAO08 609
Por t NGBG | Cool er DTA24 1915
Por t NGBQut put DTA10 1218
Port Ri ng DTA16 1360
ThdMai n DTA19 170
ThdNGBI nput DTA11 609
St bdNGBGi | Cool er DTA25 1149
St bdNGBCQut put DTAO09 609
TGBI nput DTA31 208
TGBQut put DTAO05 696
Tai | TakeOF f DTAO6 2572

Table 3. List of Accel eroneter

Tor que:

cause rotation

Torque is a force or

The data

system of forces that

i ncl udes

Names and Parts

tend to

the different torque




| evel s applied by each helicopter

test flights.

duri ng

the operational

Gear Nane/lIndex: These two variables include 63 type of
gears and the associated index nunbers of those gears.
Table 4 provides the list of gear nanmes and the total
nunber of acquisitions for each of those gears.
Gear Nanme Size | Gear Nane Size | Gear Name Si ze
#2EngFCDr vShf t Spur 354 AuxLbVnPnpShf t Bl ades 170 Por t NGBTachShf t Spur 383
#2EngFr WhShf t CanGear 354 AuxLbVnPnpShf t Gear 170 Rr Covl dl er Shft1dl er 354
#2EngFr WhShf t Dr vSpur 354 G ndSt glRi ng 170 SnpRot PnpShf t Bl ades 170
#2EngFr WhShf t Spur 354 G ndSt g2Ri ng 170 SnpRot PnpShf t Gear 170
#2Engl npShf t Spur 354 | GBI npShftPin 52 St bdAft | npDrvShft Pin 170
#2EngTachShf t Spur 354 | GBBQut Shf t Gear 696 St bdNGBEng!l npShf t Pi n 609
#2GenShf t Spur 354 | GBQut Shf t PunpBIl ades 696 St bdNGBFCDr v Shf t Gear 383
#2l npShft Aft I dl er 354 Mai nRt r Shf t OPSpur 170 St bdNGBOPDr v Shf t Spur 383
#21 npShft1dl er 354 Mai nRt r TachShf t Spur 354 St bdNGBQut Shft Pi n 609
#21 npShft Pi n 354 Q | Cool Shft Spur 354 St bdNGBTachShf t Spur 383
AGBAct Shft 1 dl er 383 Qut er Shaf t Mai nBev 170 St g1HydPnpShf t Spur 354
AGBAct Shft Spur 383 Qut er Shaf t SunGear 170 St g1PI nt Shf t Gear 170
AGBDx vShf t Gear 383 Por t Af t | npDr vShf t ACCPi 609 St g2PI nt Shf t Gear 170
AGBDx vShf t Spur 383 Port Aft I npDrvShftPin 170 St g2SunsShf t Gear 170
AGBENgSt r t Shf t Spur 383 Por t NGBEngl npShft Pi n 609 TRTakeof f Shf t Spur 1286
AGBGen#1Shf t Spur 383 Por t NGBFCDr vShf t Gear 383 TGBI npShf t Gear 52
AGBGen#3Shf t Spur 383 Por t NGBFCDr vShf t LHZer | 383 TGBI npShft Pin 52
AGBOPShf t Spur 383 Por t NGBFCDvnShf t LHZer | 383 TGBQ | PnpShf t Bl ades 52
AGBSt g2Sr vPnpShf t Spur 383 Por t NGBOPDr v Shf t Spur 383 TGBQ | PnpShf t Gear 52
AGBUt PnpShf t Spur 383 Por t NGBQut Shf t ACCSpur 609 TGBQut Shf t Gear 696
AGBW hPnpShf t Spur 383 Por t NGBQut Shf t Gear 609 TTO dl er Shaft | dl er Spur 1286
Tabl e 4. Gear Names and Number of Acquisitions
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For the remaining variables the text from Goodrich
Corporation Fuel & Utility Systenms (2003) is attached.

Signal to Noise Ratio (SNR): Each data channel
has a specified observed SNR associated with it.
Before the vibration data is calibrated, a power
spectral density is calculated fromthe data set.
Each conmponent in the data channel has known
frequencies associated with it. SNR neasures the
excess strength of a known tone (corrected for
operational speed differences) above the m ninum
baseline levels in a user-defined bandw dt h.

Root Mean Square (RMS): The overall energy |eve
of the vibration is represented by the RVM5 val ue
of the raw vibration anplitude. Major overal
changes in the vibration |evel can be detected by
t he RMS val ue.

Clipping: For a specific gain value, the raw ADC
bit values cannot exceed a specific calculated
value. There is no clipping in the data used in
this anal ysi s.

Frequency Slope and Low Frequency Intercept:
These Cls were installed in the algorithm per
Navy request. Using the first 10 points of the
power spectral density estimated from the raw
data, a sinple linear regression is perfornmed to
obtain the intercept and slope in the frequency-
anpl i tude domai n.

ADC Bit Use: ADC Bit Use neasures the nunber of
ADC bits used in the current acquisition. The
ADC board is typically a 16 bit processor. The
log base 2 value of the maximum raw data bit
acquired is rounded up to the next highest
i nt eger. Channels with inadequate dynam c range
typically use less than 6 bits to represent the
entire dynam c range.

ADC Sensor Range: ADC Sensor Range is the nmaxi mum
range of the raw acquired data. This range
cannot exceed the operational range of the ADC
board, and the threshold value of 32500 is just
bel ow the maxi mum perm ssi ble value of +32767 or
-32768 when the absolute value is taken.
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Dynam ¢ Range: Dynamc Range is simlar in spirit
to the ADC Sensor Range, except the indicator
reports dynam c channel range as a percent rather
than a fixed bit nunber.

Kurtosis: The fourth nonent (Kurtosis) of the
distribution has the ability to enhance the

sensitivity of tail changes. It has a value of 3
(Gaussian distribution) when the nmachinery is
healthy. Kurtosis values, larger than 3.5, are
usually an indication of localized defects

However, distributed defects such as wear tend to
snmooth the distribution and thus decrease the
Kurtosi s val ues.

Gear Distributed Fault (GDF): GDF is thought to
be an effective detector for distributed gear
faults such as wear and nultiple tooth cracks.
GDF is calculated fromthe fornul a bel ow

GDF = StdDev(RS)
StdDev(Al)
RS = residual data

Al = signal average

Peak- To- Peak (P2P): The Peak-To-Peak value of the
raw vibrating anplitude represents the difference
between the two vibration extrene. Wen failures
occur, the vibration anplitude tends to increase
in both upward and downward directions and thus
t he Peak- To- Peak val ue increases.

Si deband Modul ation (SM: SM analysis is designed
to reveal any sideband activities that may be the
results of certain gear faults such as

eccentricity, m sal i gnnent , or | ooseness
(Goodrich Corporation Fuel & Uility Systens,
2003).

B. METHODCOL OGY
The goal of this analysis is to conpute a threshold
value for each particular gear type and tail nunber, so

that a single nunerical value can be used to track the wear
12



on each gear. In order to calculate this threshold val ue
a new data set of a single gear and tail nunmber was created
from the whole data set. This was done wusing the
make. dat anew function in S-PLUS. The code for this function
is presented in Appendix A This function created 252
different data sets fromthe 63 gear types and four unique
tail nunbers. Each of the seven Cls (See Table 1) for each
data set was considered to behave as a wunivariate tine

series.

1. Uni variate Time Series
Since the data was obtained continuously over a tine
interval, each of the Cls was assunmed to be equally spaced

intine and to exhibit univariate time series behavior.

A "univariate tine series" consists  of scal ar
observati ons recor ded sequentially W th equal tinme
intervals between observations. For ease of analysis,

univariate tinme series data sets are usually displayed in
colum form In a univariate tine series, time is an
inplicit variable. Properties of a tine series data set,
such as stationarity, seasonality and trend, nust be
considered before starting the analysis (N ST SEVMATECH
2003).

a. Stationarity

Stationarity is often assumed for data that

follows a tinme series pattern. Under the stationarity

assunpti on, t he nmean, vari ance and aut ocorrel ation
structure remain constant over time. G aphi cal |y,
stationary series exhibit no apparent trends. Time plots

are very useful because nonstationarity can often be
detected froma study of the plot (N ST SEMATECH, 2003).

13



For our study, time plots were used to examne if
each CI data for a particular gear and tail nunber is
stationary or not. To draw the time plot for each gear C
the “timeplot” function in Appendi x A was used.

b. Seasonal ity

Seasonality refers to the periodic fluctuations
in a data set. W tested for seasonality since we are
dealing with a tinme series. |If the presence of seasonality
is observed it nust be considered in our tinme series nodel.

There are several graphical nethods wth which to
detect the presence of seasonality. These include tine
pl ots, seasonal sub-series plots and multiple box plots.
The anal yst nmust know the seasonal period to be able to use
sub-series plots or nultiple box plots. For our data, the
seasonal period is unknown; therefore the preferred nethod
was to use tine plots. An alternate course of action would
be to use the autocorrelation plot to detect seasonality.
If there are seasonality spikes (sudden increases) in the
plot, they can be observed at l|ags equal to the period
(NI ST SEMATECH, 2003).

C. Trend

A trend in a data is the novenent in a direction
over a long-termperiod of tinme. It is defined by the added
i nfluence of many factors that wll affect the tinme series
in a consistent and gradual way over a |long period of tine
(Ragsdal e, 2001, p. 509). We used tinme plots to detect the
presence of trends in our data sets.

d. Time Plots

Once the background information was gathered and
the objectives are carefully defined, the next and nopst

inmportant step was to plot the data versus tine. Ti me

14



plots graphically sunmarize a univariate data set in a way
t hat makes it easy to anal yze and under st and
characteristics of the data set. Characteristics that can
be detected from tinme plots include trend, seasonality,
outliers, and discontinuities. The tine plot is also a very
useful tool for the analyst, because it assists in
describing the data and formulating a plausible nodel
(Chatfield, 1996, p.11). Tine plots are forned by using the
time variable on the horizontal axis, and a response

vari able on the vertical axis.

For our study, we plotted every gear CI of a data
set for a particular gear type and tail nunber using the
“timeplot” function in Appendix A to detect seasonality or

trends.

2. Aut ocorrel ati on

In a tinme series nodel, there is often correlation
bet ween observations at di fferent time |ags. These

correlations are estimated by sanple autocorrelation
coefficients, which can be used to provide insights into
the probability nodel from which the data may have been
drawn. G ven N pairs of observations on two variables x and

y, the correlation coefficient is

Z(x,- —)T)(yl. —f)
JZ( -5 20 -5) ]

This sane idea can be applied to tinme series nodels to

r

(1)

check for correlation between successive Cl observations
(Chatfield, 1996, p.19).
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If we have N pairs of CI observations such as

(X, X,), (X,,X3),....,(Xy,.Xy), the first order «correlation

coefficient between X

t

and X, is given by

N-1

2:( - X7_<1>)(xr+1" En)
f' (2)

JD( SRS

where the nmean of the first and last N-1 Cl observations

}/i=

are
_ N-1
X, = 2% /(N -1) (3)
t=1
N
T = 2% /(N 1) (4)
t=2
respectively. The correlation between successive C(

observations is <called an autocorrelation coefficient
(Chatfield, 1996, p.19).

U X,

Since ¥ )

~ and N(N-1) gets close to one for |arge

sanpl e sizes, a sinpler formula can be given by

N-1

(xt -X )()ct+1 —)?)

n=+ (5)
2

> (5%

t=1

Simlarly the correlation between CI observations a
di stance k apart is given by

N-k

(. =% )(% =%)

r, == (6)

> (x,-%)

=

16



This is called the autocorrelation coefficient at lag k
(Chatfield, 1996, pp.19-20).

In our study, we used autocorrelation to identify an
appropriate time series nodel. To acconplish this we
plotted autocorrelation functions for each Cl varying the
nunber of | ags. There are two types of graphical nethods
t hat show autocorrel ati ons.

a. Autocorrel ation Plots

In this study, we used autocorrelation plots to
identify the order of a noving average nodel (M) (See
Section B.3). To draw the autocorrelation plots of each C,
the “draw acf.plots” function in Appendi x A was used.

Aut ocorrel ation plots lead us to discover where
the function approaches a zero value and ultimately the
order of the Myving Average (MA) nodel, which is denoted as
g (NI ST SEMATECH, 2003).

b. Partial Autocorrelation Plots

The partial autocorrelation at lag k is the
autocorrel ati on between X; and X.x not conveyed through the
intervening values. The autoregressive (AR) (See Section
B.3) order of a Box-Jenkins (ARMA) nodel is commonly
identified through the use of partial autocorrelation plots
(NI'ST SEWMATECH, 2003). Detailed information about the
partial autocorrelation function can be found in Brockwell
and Davis (1996).

In  our study “draw. acf. plots” function in
Appendi x A was used to draw partial autocorrelation plots
of each Cl. W determined the order of an AR nodel by
examining the lag where the function approached zero.
Details about calculating the order of AR nodel can be

found in Section B.3 (N ST SEMATECH, 2003).
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3. Time Series Mdels
a. Autoregressive (AR) Moddel s
A comonly used approach for nodeling univariate
time series is through applying an AR nodel to the series.
The general formof the AR nodel applied is AR(p):

X, =@X,+gX,+ .. +@X,_, +E (7)

where X, is the tine series and & is a white noise series.

An autoregressive nodel can sinply be thought of as a
linear regression relationship between the current value
and one or nore prior values of the series. The order of
the AR nodel is known as p (NI ST SEMATECH, 2003).

Exam ning the partial autocorrelation plots |eads
us to discover where the function approaches a zero val ue.
Since the AR(p) process becones zero at lag p+l and
greater, we can now deduce the value of p. |If an AR nodel
is shown to be appropriate from the analysis of a sanple
autocorrelation plot, then we can use the analysis of the
sanple partial autocorrelation plot to help identify the
order of the AR nodel. For this study the range of val ues
within the 95% confidence intervals are accepted as zero
val ues (NI ST SEMATECH, 2003).

After examning the partial autocorrelation plots
of each CI for each data set of a particular gear and tai
nunber, the order of the AR nobdel was determned to often
be p=1. The AR(1l) is given by

X = @oX_+ ¢ (8)

In an AR(1) nodel, x depends on the value it
previ ously held. This characteristic should prevent |arge
junp sizes from X.; to X. The value of ¢ should be
between -1 and 1 (Chatfield, 1996, p.35). For this study
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we chose ¢ = 0.8 as a starting value because it usually |ed

to convergence in the software.
b. Movi ng Average (MA) Model s
The MA(g) nodel is described as follows:

X, = 6¢,-06¢.,-6,¢6,-. ..-6¢._, (9)
where X, is the tinme series, ¢ are white noise, and
6, ..., 6 are the parameters of the nodel (Chatfield,
1996, p. 33).

Exam ning the autocorrelation plots leads us to
di scover where the function approaches a zero value. Since
the MA(Qg) process becones zero at lag g+1 and greater, we
can now cal culate the value of g. For this study the range
of values within the 95% confidence intervals are accepted
as zero values (NI ST SEMATECH, 2003).

After examning the autocorrelation plots of each
Cl for each data set of a particular gear, and tail nunber,
the order of the MA nodel was determned to often be one.
The noving average nodel of order one, which is MA(l), is
gi ven by:

X, = &-6¢._ (10)

In an MA(1) nodel, X, depends on the value of the
i medi ate past error, which is known at tine t. Thi s

characteristic should prevent large junp sizes from X_ to

X (Chatfield, 1996, p.34). The value of & should be

between -1 and 1. For this study we used the value of &
where the optimzer converged for nost of the Cl nodels,
which was 6 = 0. 2.

Through the analysis of the autocorrelation

function (ACF) plots and the partial autocorrelation
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function (PACF) plots, we observed that a conbination of
these two nodels (AR and MA) would best fit to each Cl data
of particular gear type and tail nunber. Therefore we
appl i ed Box-Jenki ns (ARMA) Model s.

C. Box- Jenki ns Model s ( ARMVA)

The Box-Jenkins ARMA (Autoregressive Integrated
Movi ng Average) nodel is a conbination of the AR and MA
nodel s previously discussed. The first main assunption of
the Box-Jenkins ARMA nodels is that the tine series is
stationary. So we nust first ensure that there is
stationarity in all of the univariate C tine series. |If
non-stationarity is observed in the time series data, Box
and Jenkins recomend a process called differencing that
can be applied one or nore tinmes to achieve stationarity
(NI ST SEMATECH, 2003).

For our study, each C of a data set for a
particular gear and tail nunber was plotted against tine.
It was observed from these plots that each particular data
set was stationary or alnost so. Therefore, we did not

need to apply the differencing process.

The general form of an ARIMA nodel is
ARI MA(p, d, q) . Since the data exhibited no apparent
deviations from the stationarity, we fit an ARMA nodel
setting the differencing value to zero. The genera

ARMA( p, q) nodel is given as:

X-gX_ —¢X - .. —¢X_,=&-6¢& -0, ,-. ..-0¢ (11)

t=q

Now t hat we have a nodel wi thout differencing, we
need to identify the orders (i.e., the p and q) of the
autoregressive and noving average terns. After exam ning

ACF and PACF plots for every ClI of a particular gear type

20



and tail nunber, both p and g values were estimted as one.
Therefore to nodel each gear ClI data, we used an ARMA (1,1)

nodel given by
Xt = ¢ Xt—l + £t - 6 Et—l ( 12)

To nodel the univariate tine series nodel for each O, we

used the “arima. mMe” function that is built in to S-PLUS®.

Providing the starting values of the ARVA nodel

paranmeters (@ and 0) is necessary for the optimzer. Poor
starting values can lead to slow convergence to a |ocal
maxi mum (S-PLUS 2000 Guide to Statistics, Volume 2, pp.177
1999).

d. ARVA Model s with Regression Vari abl e

At this point, we added the torque effect to our
nodel . It is believed that there is a relation between the
torque and the Cl levels. Therefore, we added torque as a
regressor variable to each univariate tinme series nodel for
each C. To acconplish this, the S-PLUS function
“arima. me” was used. This function allows us to add torque
as an additive regressor variable to our nodels via the
“xreg” optional argunent. After adding the torque effect,
our general nodel is given by

Xt: ¢Xt—1+ gt_ggt—l+ﬁl+ﬁ2]; (13)

where B; is the intercept, B, is the slope and T. is the
torque value at tinme t for the regression nodel. Detailed
i nformati on about ARMA nodels with regression variables can
be found in S-PLUS 2000 Guide to Statistics, Vol 2, pp.173,
1999).
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e. St andar di zed Resi dual s

A residual is defined as the difference between
the observed value and the fitted value. A standardized
residual equals the residual divided by its estimted
standard error.

So far, we have nodeled each CI for every data
set of a particular gear type and unique tail nunber. Since
the variances of every nodeled C vary considerably from
one Cl to another, it is rather difficult to know whether a
fitted residual should be considered large or small.
Ther ef or e, we use standardized residuals, which are
i ndependent of the units of neasurenent of the variables.
In particular, standardized residuals provide a statistical
metric for determning the size of a residual for each Cl.
Because of this fact, we decided to use the standardized
resi duals of each nodeled CI as our new Cls for the rest of
the analysis. Therefore, we created new Cl matrices for
each particular gear and tail nunber data set using the
function “nmake.newci” in Appendix A (SSI Scientific
Sof tware, 2003).

After nodeling each of the seven Cls (See Table 1
in Chapter 11) given in Table 1 for each data set, the
standardi zed residuals of each CI nodel were saved. The
seven standardized residual vectors were then used to
create new CI matrices for each data set corresponding to a

particul ar gear type and tail nunber.
4. Mahal anobis Metric
The general form of the Mahal anobis netric is given by

P=(x-M) 1 (x-M) (14)
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where X is the new Cl matrix consisting of seven ClI (See

Table 1 in Chapter I1) vectors,

CL(), . ..,CL()

X=| - ' (15)
Cl‘l(n), .. .,CI7('n)

n . nunber of the acquisitions for each C

Cl, : Residual kurtosis

Cl, : Residual rns

ClI, : Gear Distributed Fault

ClI, : Fm Peak-to-Peak

CI;, : Side nodul ation 1

CI, : Side nodul ation 2 and

CI, : Signal Average rms

The nmean of the CI, is represented by

iczj(i)
R (16)

n

The nmean vector u, isS

!

Mx{ﬂl By My Hs M ,U7} (17)

and the covariance matrix Cis given by
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[Cov(l,]) . . .  Cov(,7)]
Cov(2,1) . . . Cov(2,7)
Con(X)=Cy. = ' ' ' . (18)
| Cov(7,) . . . Cov(7,7)

The Mahal anobis netric is comonly used to detect
outliers in a nultivariate data set which includes two or
nore variables of interest (dependent variable). The
Mahal anobis netric does not treat all Cl values equally
when cal cul ating the distance fromthe nean vector; instead
it weights the differences by the range of variability and
by the vectors’ covariances. The Mahal anobi s neasur enent
is also useful for discrimnation since the distances are
calculated in units of standard deviations from the mean
vector (Therno Gal actic, 2003).

Qur analysis is based on detecting any unusual |eve
in C values relating to pre-existing nachining or
manuf act uri ng-i nduced defects, poor operating conditions
(loss of lubrication), foreign object damage, environnental
factors (corrosive environnents and resulting pitting
damage) or excessive |oading. W know that no failure
occurred during the collection of each data set for each
particular gear type and tail nunber. Therefore, by
calculating the Mahal anobis distances for each of these
data sets, we gain insight about the expected range of the
Mahal anobi s di stances. If the Mahal anobis distance of any
acquisition is bigger than a given threshold value, we can
conclude that there mght be a defect in that particular
gear.
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After calculating the WMhal anobis distances for each
data set, we nust then find a specific distribution which
best fits the set of Mahal anobis distance vectors of all
data sets. By acconplishing this we can set a Mahal anobis
threshold value for each particular gear type and tai
nunber. Then this threshold value will be used to detect

any defective gears.

5. Goodness-of -Fit Tests
a. Chi - Squar e Goodness-of-Fit Test
To set a threshold value for each gear type, we
need to fit the Mahalanobis distances to a specific
distribution. In this study, the chi-square goodness-of-fit
test was wused to test if the calculated Mahal anobis
di stances of each data set for a particular gear type and

tail nunmber fit to an exponential distribution.

The chi-square goodness-of-fit t est can be
applied to any wunivariate distribution for which the
cunmul ative distribution function can be calculated. Chi-
square goodness-of-fit test is applied to binned data (N ST
SEMATECH, 2003).

The chi -square t est nul | hypot hesi s and
alternative hypothesis are

Ho: The data follows a specific distribution

Ha: The data does not follow a specific
di stribution.

The chi-square goodness of fit conputation uses
the followng test statistic:

k 2
x’=>.(0,-E) IE (19)
t=1
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where k is the nunber of bins, O is observed frequency for

1

bin i and Eis the expected frequency for bin i. The

expected frequency is cal cul ated by using
E, =N(F(Y,) - (F(¥)) (20)

wher e t he cunmul ati ve di stribution functi on f or t he

distribution being tested is F, the upper limt for class i
is Y, the lower limt for class i is Y, and the sanple

size is N

The null hypothesis was accepted if
X <X aheem

where ¢ is the nunber of estimated paraneters and x’,,., is

the critical value fromthe chi-square distribution with k-
c degrees of freedom and a significance level of o (N ST
SEMATECH, 2003).

b. Kol mogor ov- Smi rnov Goodness-of -Fit Test

The Kol mogor ov- Smi r nov (K-9) t est is an
alternative goodness-of-fit test that is used to decide if
a sanple <cones from a population wth a specific
distribution. For our study, the K-S goodness-of-fit test
was al so used as an alternative to test if the calcul ated
Mahal anobi s distances of each data set for a particular

gear and tail nunber fit an exponential distribution.

The K-S test is based on the enpirical
di stribution function. Gven N ordered data points

Y.Y,.Y,,...Y,, the enpirical distribution function is defined

as

E, =n(i)/N (21)
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where n() is the nunber of points less than Y, and the Y,

1

are ordered fromsmallest the |argest value. This is a step
function that increases by 1/N at the value of each ordered
data point. An attractive feature of this test is that the
distribution of the K-S test statistic itself below does
not depend on the underlying cunulative distribution
function being tested. Despite this advantage, the K-S test

has several inportant [imtations:

. It only applies to continuous distributions.

. It tends to be nobre sensitive near the center of
the distribution than at the tails (NST
SEMATECH, 2003).

The K-S test null hypothesis and alternative

hypot hesi s are
Ho: The data follows a specific distribution.

Ha: The data does not follow a specific

di stri bution.

The K-S test statistic is defined as

D = max (22)

isN

F(Y»—%

where F is the theoretical cunulative distribution of the
continuous distribution being tested. The hypot hesi s
regarding the distributional formis rejected if the test
statistic, D, is greater than the critical value obtained
froma table. There are several variations of these tables
in the literature that use sonmewhat different scaling for
the K-S test statistic and critical regions. These
alternative formulations should be equivalent, but it is
necessary to ensure that the test statistic is calculated
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in a way that is consistent with how the critical values
were tabul ated (N ST SEMATECH, 2003).

6. Bonferroni Correction/ Adj ust ment Procedure

In our study, we perfornmed 224 goodness-of-fit tests.
Conventionally, the a level is set at 0.05 for each Chi
square and K-S goodness-of-fit test.

If we perform nore than one statistical test, the
probability of observing at |east one test statistically
significant due to chance fluctuation, and to incorrectly
declare a difference to be true (Type | error), 1increases
(Sinmple Interactive Statistical Analysis (SISA), 2003).

Since we perforned a total of 224 hypothesis tests,
the probability of naking Type | error increases from the
conventional value of .05. Qur purpose is to control the
Type | error, the decision to reject the null hypothesis
( Ho: The Mahal anobis data set follows a specific

distribution) when it is, in fact, true.

The Bonferroni is used when nore than one statistica
t est in a parti cul ar st udy are bei ng per f or med
si mul t aneously. The Bonferroni correction procedure adjusts
the a level of each individual test downwards to ensure
that the overall risk for a nunber of tests remains 0.05
To acconplish this, instead of wusing the a significance
| evel for each test in an entire set of n conparisons, the
Bonferroni correction sets the a value for each test to
aln (Wistein, 2003).

In our study, the Bonferroni adjusted |evel of
significance was cal culated as 0.05/224 = 0.0002193 . The null

hypothesis was rejected for any test that resulted in a
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probability of |ess than 0.0002193 which was statistically

significant. The null hypothesis was accepted for the tests

with a probability value greater than 0.0002193. See

Chapter 111, Section C, for results of this analysis.
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['11. ANALYSI S

A UNI VARI ATE BOX- JENKI NS ( ARVMA) MODELLI NG ANALYSI S

1. Model Identification Analysis
a. Stationarity, Seasonality and Trend Anal ysis
The first step in developing a time series nodel
is to determine if the series is stationary and if there is
any significant seasonality or trend that needs to be

nmodel ed.

Using the “tinmeplot” function in Appendix A, each
of the Cls for a particular gear type and tail nunber was
plotted against time. After exam ning each of these plots,
it was observed that alnpbst all of them were plausibly
stationary. Since non-stationarity was not observed in our
univariate time series data sets, we did not need to use
differencing. Figures 1 through 3 provide a few exanpl es of
t hese plots indicating stationarity.

Time Series Plots For Each Cl
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Figure 1. Time Plots of The Cls For GCear Type
“AGB Weh Pnp Shft Spur” and Tail Nunber “164539”
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b. Aut oregression (AR) and Moving Average (M)
O der Analysis

Since the above tine series plots of each C and
the others for particular gear type and tail nunber did not
exhibit any significant non-stationarity or seasonality, we
generated the autocorrelation and partial autocorrelation
plots of the raw data to decide about the orders ARNMA(p, Q)
nodel s. For this purpose, we used the “plot.acf.plots”
function in Appendix A Figures 4 through 6 provide a few

exanpl es of these plots.
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Autocorrelation Plots for Cls
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Autocorrelation Plots for Cls
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Aut ocorrel ation Plots for Cl's
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Aut ocorrel ation function pl ots di spl ay t he
coefficients starting fromlag O to lag 25. Dashed lines
mark off approximte 95% confidence bands. Mst of the
autocorrelation and partial autocorrelation plots with a
95% confi dence band showed that the autocorrelation at |ag
1 was significant. Based on these plots, ARVA(1l,1), was

suggest ed. For convenience we used a single nodel

X=¢X_+¢-6¢_, for every Cl of gear and tail nunber.

Since it is believed that torque affects the C
levels, we added torque effect to our single ARVA(L, 1)
nmodel as a regression variable and the single nodel changed
to X,=¢X,_+ -6¢_+B+ [T . See Chapter |1, Section B.3

for details. Then, we nodeled 252 univariate Cl tine series
for 63 different types of gears and 4 different tai
nunbered aircraft.

2. Model Validation Anal ysis

Havi ng devel oped the nodels, diagnostics were checked
to determine if the nodels were reasonable. Specifically,
standardi zed residual plots were analyzed to determne if
ARMA(1,1) wth regression variable nodels were valid

nodel s.

A plot of the standardi zed residuals over tinme is the
single nost inportant diagnostic for tinme series nodel
validation. By examning the standardized residual plots,
we can detect outliers, non-honbgeneity of wvariance, and
obvious structure in tinme. If our nodel is correct, then
standardi zed residuals should |ook approximately like a
Gaussian white noise (purely random process with zero nean
and unit variance (S-PLUS 2000 Guide to Statistics, Vol 2,

pp. 179, 1999).
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Anot her nmethod for tinme series nodel validation is to
exam ne the autocorrelation function of the residuals. |If
our nodels are adequate, then the autocorrelations of the
resi dual s should be uncorrelated and approxi mately Gaussi an
random variables with mean zero and variance n''. Therefore,
observing |arge autocorrelations indicates that our nodels
may be inadequate (S-PLUS 2000 Guide to Statistics, Vol 2,
pp. 179, 1999). Figures 7 through 13 provide an exanple of
ARMA(1,1) with regression variable nodel diagnostic graphs
for each of the Cls for the gear type “AGB Wh Pnp Shft
Spur” and Tail Nunber “164539” (description of the
i ndi vi dual parts of the graphs follow).

ARIMA Model Diagnostics for Residual kurtosis

Plot of Standardized Residuals
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Figure 7. ARVA Mbdel Diagnostics for C “Residual
kurtosis” of Gear Type “AGB Wh Pnp Shft Spur” and Tail
Nunber “164539”
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ARIMA Model Diagnostics for Residual RMS
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ARIMA Model Diagnostics for fmP2P
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ARIMA Model Diagnostics for sm.2
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Lj ung- Box, a randommess test based on autocorrelation
plot, is commonly used to test the quality of fit of a tine
series nodel. The nodel is determned to pass the test if a
significant correlation is not observed. However, i nstead
of testing randomess at each distinct |lag, Ljung-Box tests
the overall randommess based on a nunber of |ags. For this
reason, it is often referred to as a “portnmanteau” test
(Burn Statistics, 2003).

First, we exam ned standardized residuals graphs for
each CI ARMA nodel. Al the standardized residuals behave
approximately li ke a Gaussian white noise process and there
isS no obvious structure in tinme. Standardized residuals of
each nodel for Cs are wuncorrelated and approxinmately

Gaussi an random vari ables with nean zero and unit vari ance.

As a second test for nodel validation, we examn ned the
autocorrelation function of the residuals. It was observed
t hat t he aut ocorrel ati ons of t he resi dual s wer e
uncorrel ated and approxinmately Gaussian random vari abl es
with mean zero and variance n' For this case our sanple
size n was equal to 216. Alnbst no large residual values
were observed. Simlar results were obtained from the other
nodels for different gear types and tail nunbers.
Therefore, we concluded that our nodels were adequate.

However, in 28 out of 252 nodels, for a particular
gear type and tail nunber, the arima.me() function did not
converge, presunably because of the small sanple sizes. A

list of these data sets is provided in Table 5.
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Gear | ndex/ Nane Tai | Nunber Sanpl e Size
19 AGB Stg2 Srv Pnp Shft Spur | 162464 90

22 Aux Lb vn Pmp Shft Bl ades 163075 15

23 Aux Lb Vvn Pmp Shft Gear 163075 15

24 Gnd Stg 1 Ring 163075 15

25 Gnd Stg 2 Ring 163075 15

26 1GB Inp Shft Pin 163075, 164539 4,9

29 Main Rtr Shft OP Spur 163075 15

32 CQuter Shaft Min Bev 163075 15

33 CQuter Shaft Sun Gear 163075 15

35 Port Aft Inp Drv Shft Pin 163075 15

45 Snp Rot Pnp Shft Bl ades 163075 15

46 Snp Rot Pnp Shft Cear 163075 15

47 Stbd Aft Inp Drv Shft Pin 163075 15

53 Stg 1 Hyd Pnp Shft Spur 163086 52

54 Stg 1 Plnt Shft Gear 163075 15

55 Stg 2 PInt Shft Gear 163075 15

56 Stg 2 Sun Shft Cear 163075 15

58 TGB Inp Shft GCear 163075, 163086, 164539 | 4, 20, 9
59 TA&B Inp Shft Pin 163075, 163086, 164539 | 4, 20, 9
60 TGAB G| Pnp Shft Bl ades 163075, 164539 4,9

61 TAB G| Pnp Shft Gear 163075, 164539 4,9
Table 5. The List of Data Sets, which could not be Mdel ed

Due to the Snml |

After

Chapt er

nodel i ng each of

1) for a particular

Sanpl e Si zes.

the seven Cls (See Table 1

data set, the new Cl

43

in

matrices




were created by taking the standardized residuals of each
of those CI nodels. Then for the rest of the analysis we
used these new natrices. To acconplish this, we used the
fuction “make. newci” in Appendix A See Chapter 1I, Section

B.3.e for details.

B. MAHALANOBI S METRI C ANALYSI S

We have a multivariate data set of Cls for each data
set of a particular gear type and tail nunber. As we stated
previously, since no failure occurred during the collection
of our data, we can assune that all the gears in each
aircraft are heal t hy. Ther ef or e, cal cul ating t he
Mahal anobis nmetric, a nultivariate distance netric, should
give us an insight about the expected range of the
Mahal anobi s distances for a specific healthy gear type.
Then, we can use this information for each data set to set
a threshold value in order to detect any unusual l|evel in
these CI values relating to pre-existing machining or
manuf act uri ng-i nduced def ect s, | oss of | ubrication
corrosive environments and resulting pitting damge or

excessi ve | oadi ng.

Using the new Cls of 224 data sets which we managed to
nodel , we calculated the WMahal anobis distances. To
acconplish this, the function “nmake. mmhanew in Appendix A
was used. See Chapter [Il, Section B.5 for Mhal anobis
Metric details.

Next, we wanted to determ ne which distribution would
fit best to each of these Muhal anobis distances data sets.
By acconplishing this, we would be able to set threshold
values of “Warning” and “Alarnmi for each particular gear
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type and tail nunmber. Then this threshold values can be

used to detect any defective gears.

Hi stogranms graphically sumrarize the distribution of a
univariate data set and provide strong indications of the
proper distributional nodel of the data. Therefore, we used
histograns to have an idea about which population
distribution the Mhal anobis data sets mght cone from
Figure 14 provides sone of these histograns for different
gear types and tail nunbers. These histograns |ooked very
much like those from exponential distributions. But we
needed to verify that. To acconplish this, goodness of fit
tests were used.
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Fi gure 14. Mahal anobi s di stances histograns for

different gear types and tail nunbers
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C. GOCDNESS OF FIT TESTS ANALYSIS AND BONFERRON
CORRECTI ON PROCEDURE

Chi - Square and K-S goodness-of-fit tests were applied
to decide if a sanple set of WMhal anobis distances cane
from an exponential distribution. See Chapter 11, Section
B.4 for details about Chi-Square and K-S goodness-of-fit
tests.

For each goodness-of-fit test, the a |evel is
conventionally set to 0.05. Since we performed 224 tests on
the same hypothesis, the probability of nmaking a Type |
error would increase fromthe conventional a value of 0.05
but we wanted to control Type | error. In order to do this,
we applied the Bonferroni nultiple conparison correction.
Therefore our new Bonferroni adjusted |evel of significance
was cal cul ated as 0.0002193.

Any test that results in a probability value of |ess
than 0.0002193 was accepted as statistically significant
Simlarly, any test statistic with a probability value of
greater than 0.0002193 (including values that fall between
0. 0002193 and 0.05) was deenmed non-significant. Chi Square
and K-S goodness-of-fit test results are provided in
Appendi x B. The Bonferroni adjusted goodness-of-fit test
results are sunmarized in the Table 6.

Test Type # of Non-significant tests Per cent age
K-S 196 87.5
Chi - Squar e 188 84

Table 6. The Summary of the Goodness-of-Fit Test results
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Then, wusing the population exponential distributions
the threshold values for “Alarnf and “Warni ng” were set for
a particular gear type and tail nunber. |If any Mahal anobis
di stance occurs greater than 0.999 quantile |level, the
related gear was considered in “Warning” and if any
Mahal anobi s di stance greater than 0.999999 quantile, the
gear was considered in “Alarnf. The calculated threshold
values for specific gear types and tail nunbers are
provi ded i n Appendi x C.
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V. SUMVARY, LI M TATI ONS AND RECOMMENDATI ONS

The purpose of this study was to establish a threshold
| evel for each particular gear in CH53 aircraft such that,
while mnimzing in-flight risk, a negligible false alarm
rate is obtained. This would help us decrease the costs,
which include the replacenment and/or nmaintenance of any
aircraft conponent, as a result of a false alarm These
t hreshol ds nust be set high enough such that a false alarm

is arare event.

The vibration data collected during operational tests
was provided by the Goodrich Corporation Fuel & Utility
Systens. The dataset included different Cls related to
accel eroneters and gears for each specific tail nunber. The
entire data consisted of 23187 observations and 20
vari ables for 63 gear types and four aircraft. Only seven
Cl colums, related to a particular gear type and tai
nunber, were used to set a threshold value through the
anal ysi s.

To calculate a threshold value, first, 252 individua
data sets were created from the entire data, each for a
particular gear and tail nunber. Each of the seven C

colunmms was considered as a univariate tine series.

Box-Jenkins ARVA Models were used to nodel each of
these univariate tinme series. In developing a tine series
nodel, the characteristics of each univariate time series
data set was analyzed. Tine plots were used to acconplish
this. Exami ning each of these tine plots, it was observed
that alnmost all of them were plausibly stationary. Since

the univariate data sets did not exhibit any significant
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non-stationarity, t he aut ocorrel ati ons and parti al
autocorrelation plots were then examned to determ ne the
order of the AR and MA conponents. Mst of them | ooked |ike
AR(1) and MA(1l). Therefore, based on these plots ARVA(1, 1)
was suggested. Torque was added to our nodels as a
regression variable because it was believed that torque
affected the Cls. However, in 28 out of 252 data sets for a
particular gear type and tail nunber the arim.ne()
function did not converge, presumably because of snal
sanpl e si zes.

Havi ng developed the nodels, standardized residual
plots were used to check the diagnostics to determne if
the nodels were reasonable. These plots proved that our
nodel, ARVA(1,1) with torque as a regression variable, was
very often an adequate nodel

Since the wvariances of every nodeled C varied
considerably from one C to another, it was rather
difficult to know whether a fitted residual should be
considered Jlarge or small. Ther ef or e, st andar di zed
residuals fromeach C nodel for a particular gear type and
tail nunber were saved as a single vector and then these
seven Cl vectors were used as our new Cls for the rest of
the analysis in order to set threshold values of “Warning”
and “Alarm”

As stated previously in Chapter |1, our analysis was
based on detecting any unusual level in Cl values relating
to pre-existing machining or manufacturing-induced defects,
| oss of lubrication, corrosive environnents and resulting
pitting danage or excessive |loading. For this purpose, we
used the Mhal anobis distance, which is a nultivariate

di stance netric. Mhal anobis netric provided insight about
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the expected range of this distance for a specific healthy
gear type. Therefore, Mahal anobis di stances were cal cul ated
using the new Cls for each of the 224 data sets which were

nodel ed successfully.

Next, we needed to find the distribution which would
fit each Mbhalanobis distance data set. Mst of the
hi stogram plots for the Mbhal anobis distance data sets for
a particular gear type and tail nunber |ooked very nuch as
if they cane from an exponential distribution. However, we

appl i ed Chi-Square and K-S goodness-of-fit to verify that.

We perfornmed 224 individual goodness-of-fit tests. In

order to control Type | error, we applied the Bonferroni
mul tiple conpari son correction, whi ch al | oned 224
conparisons while still assuring an overall alpha value no
greater than 0.05. 1In each case the null hypothesis

specified that the C’'s came from the exponential
distribution, and in 84% of the data sets wusing the
(Bonferroni-adjusted) chi-square goodness-of-fit test, and
in 87.5% using the Kol nogorov-Sm rnov, that null hypothesis
was not rejected. W set threshold values for “Warning” and
“Al ar n? for those data sets reported as plausibly
exponential using quantiles of the exponential distribution
wth the paranmeter estimated from the data. The basic
concept for threshold setting was to pick a threshold high
enough that the worst aircraft, while still healthy, would
not give a false alarm For this reason, as a rule of
thunmb, we used 0.999 quantile level for the Wrning
threshold, and 0.999999 quantile level for the A arm
t hreshol d. But when we checked if there was any warning and
alarm situation according to these new threshold val ues,

200 outliers for “Warning” and 69 outliers for “Alarnmi were
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detected. These outliers wuld be evaluated as false
alarms. O course, this was not expected since we knew t hat
no failure occurred during the collection of the data used
in this analysis. Even when we wused the 0.999999999
guantile we still observed 38 outliers. Addi tionally,
sonetinmes there was a big difference between the threshold

| evel s set for each aircraft for the sanme gear type.

One of the reasons that this technique nay not be
sufficient to provide a reasonable warning and alarm rate
is that we do not have all the information we m ght need
Different aircraft mght have used different torque |evel
patterns during their flights. Data gathered with torque
slowy increasing mght be very different than data wth
torque decreasing, especially in time series nodeling. For
instance, data collected during a flight pattern wth
torque level small, nmedium and then large mght be very
different than the data with torque |evel |arge, nedium and
then small. W mght try to set different threshold val ues
for the same gear type if we had data collected applying
different torque |evels.

Anot her reason for setting different and unreasonabl e
threshold values for the sanme gear type mght be that
different aircraft had different anmount of vibration data

for the sanme gear type.

In future studies attention needs to be paid to
patterns of data gathering. It would be valuable to have
| arge data sets, from a nunber of aircraft, covering sone
of the torque patterns nobst often encountered during real
operations. W expect that these patterns mght be quite
different depending on the different mssions assignhed to

the aircraft. Further studies mght help determ ne whether
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torque history has an effect on CI or whether it is
sufficient to consider only the instantaneous value of

t or que.
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APPENDI X A. S PLUS FUNCTI ONS

Speci al thanks to Professor Sanuel Buttrey for

supplying his knowedge in witing the following S-PLUS

functi ons.

1.

make. dat anew functi on

function(gears, tails, names.only = F)

{

T

Create a gear data set for a particular gear and tail
nunber. If "nanmes.only"” is TRUE, just produce the set of
nanes and return them

Argunent s:
gears: vector of character string with name of gear
tails: vector of character string with tail nunber

i f(nanmes.only) {

}

out <- character(length(gears) * length(tails))
nmctr <- 1

for(i in 1:1ength(gears)) {

dat agear <- ac[ac[, "GearNane"] == gears[i], ]

i.txt <- gears[i]

i f(substring(i.txt, 1, 1) == "#")
i.txt <- substring(i.txt, 2, nchar(i.txt))

i f(substring(i.txt, 9, 9) == "#")
i.txt <- past e(substring(i.txt, 1,8),
substring(i.txt, 10, nchar(i.txt)), coll apse =
")

i.txt <- unlist(unpaste(i.txt, sep =" "))

PLtxt <- i.txt[i.txt I=""]

i.txt <- paste(i.txt, collapse = "")

for(j in lL:length(tails)) {
j.txt <-tails[j]
dat ageartail <- datagear[ datagear
[,"Tail"]==j.txt,]

#

# Construct the name of the thing to be
# saved

#

nm <- paste("ac.", i.txt, ".", j.txt,

sep = "")
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i f(nanes.only) {
out[nmctr] <- nm
nmctr <- nmctr + 1

}

el se {

if(!exists(nm where = 1)) {
cat("Creating object”,nm "\n")
assi gn(nm datageartail,where = 1)

}

el se cat (nm "al ready exi sts;

created\n")

}
}
}
i f(nanes. only)
return(out)

return(invisible())
return(datageartail)

2. timeplot function

function(gears, tails)

{

# Argunents:

# gears: vector of character string with nanme of gear
# tails: vector of character string with tail nunber

for(i in 1:length(gears)) {
countgears = i
i.txt <- gears[i]

if(substring(i.txt, 1, 1) == "#")
i.txt <- substring(i.txt, 2, nchar(i.txt))
i f(substring(i.txt, 9, 9) == "#")
i.txt <- paste(substring(i.txt, 1,
8), substring(i.txt, 10, nchar(
i.txt)), collapse ="")
i.txt <- unlist(unpaste(i.txt, sep =" "))
iLtxt <- Q.txt[i.txt !'=""]
i.txt <- paste(i.txt, collapse ="")
for(j in 1:length(tails)) {
counttails = j
j.txt <- tails[j]
nm <- paste("ac.", i.txt,".",j.txt,sep ="")

if(!exists(nm)

stop(paste("No data set named", nm)

#

#it exists go and get it
#

data <- get(nm
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pl ot nane = paste("Cear:",i.txt,"TN.", j.txt)
par(nfrow = ¢c(3, 3))
gearCls <- nanmes(ac[14:20])
k =0
for(i in 14:20) {
k =k +1
plot(data[, i], type = "I",
xlab="tinme", ylab =gear Cl s[k])
if(i == 14) {
title(mai n = pl ot nane)

}
}
if(counttails !'=length(tails)) {
gr aphsheet ()
}
}
i f(countgears != length(gears)) {
gr aphsheet ()
}

3. draw. acf.plots function

function(gears, tails)

# Argunents:
# gears: vector of character string with name of gear
# tails: vector of character string with tail nunber

{
for(i in 1:1ength(gears))
{
countgears = i
i.txt <- gears[i]

if(substring(i.txt, 1, 1) == "#")
i.txt <- substring(i.txt, 2, nchar(i.txt))
i f(substring(i.txt, 9, 9) == "#")

i .txt<-paste(substring(i.txt,1,8),
substring(i.txt, 10, nchar(i.txt)),collapse =""

i.txt <- unlist(unpaste(i.txt, sep =" "))
iLtxt <- Q.txt[i.txt !I=""]
i.txt <- paste(i.txt, collapse ="")

for(j in l:length(tails)) {
counttails = j
j.txt <- tails[j]
nm <- paste("ac.", i.txt, ".", j.txt, sep = "")
if(lexists(nm)
stop(paste("No data set nanmed", nm)
#
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#it exists go and get it

#

data <- get(nm

data <- data[ 14: 20]

data <- as.matrix(data)

par(mfrow = c(3, 3))

k =0

for(i in 1:7) {
k =k +1
acf(data[, i])

}

par(nmfrow = c(3, 3))

k =0

for(i in 1:7) {
k =k +1
acf(data[, i], type = "p")

}

if(counttails !'=length(tails)) {
gr aphsheet ()

}

}

i f(countgears != length(gears)) {
gr aphsheet ()
}

4. make. newci function

function(gears, tails)

{

Create a gear data set for a particular gear and
tail nunber.

Argunent s:
gears: vector of character string with name of gear
tails: vector of character string with tail nunber

HHHHHHFH

for(i in 1:length(gears)) {
i.txt <- gears[i]

i f(substring(i.txt, 1, 1) == "#")
i.txt <- substring(i.txt, 2, nchar(i.txt))
i f(substring(i.txt, 9, 9) == "#")

i .txt<-paste(substring(i.txt,1,8),

substring(i.txt,10,nchar(i.txt)), collapse= ""

i.txt <- unlist(unpaste(i.txt, sep =" "))
iLtxt <- dQ.txt[i.txt '=""]
I.txt <- paste(i.txt, collapse ="")

for(j in 1:1ength(tails)) {
j.txt < tails[j]
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#

#Construct the nane of the thing to be saved

#

nnx- paste("ac.",i.txt, ".", j.txt, sep = "")
if(!exists(nm)
stop(paste("No data set named", nm)

#

#it exists go and get it

#

data <- get(nm
for(k in 1:7) {

i f(k

}
i f(k

}
i f(k

}
i f(k

== 1){

zap. Res. kur <-

ari ma. m e(dat a$Resi dual . kurt osi s,

nodel = list(ar = 0.8, ma = 0.2), Xxreg
= cbind(1, data$Torque))

zap. Res. kur. ARI MA. r es<-

ari ma. di ag(zap. Res. kur, pl ot =F) $st d. res
id

first <- zap.Res.kur.ARI MA. res

== 2){

zap. Res. r me<-

ari ma. m e(dat a$Resi dual . r ns, nodel =
list(ar = 0.8, ma = 0.2), xreg =
cbi nd(1, data$Torque))

zap. Res. rms. ARl MA. r es<-

ari ma. di ag(zap. Res. rns, pl ot =F) $st d. res
id

second <- zap.Res.rns. ARI MA. res

== 3){

zap. Geardi sfaul t <-

ari ma. m e(dat a$Gear Di sFaul t, nodel =
list(ar = 0.8, ma = 0.2), xreg
cbi nd(1, data$Torque))

zap. Geardi sfaul t. ARl MA. r es<-

ari ma. di ag(zap. Geardi sfaul t, pl ot
F)$std.resid

t hi rd<- zap. Ceardi sfault. ARI MA. res

== 4) {

zap. f mP2P <-

ari ma. m e(dat a$f nP2P, nodel = list(ar =
0. 8, m = 0.2), xreg = cbhind(1

dat a$Tor que))

zap. f mP2P. ARI MA. r es<-

ari ma. di ag( zap. f nP2P, pl ot =F) $st d.
resid

fourth <- zap.fnP2P. ARI MA. res
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i f(k

}
i f(k

}
i f(k

}
}

return(invisible())
ret ur n( NewCl)

== 5) {

zap.sm 1<-

ari ma. nl e(dat a$sm 1, nodel =

list(ar = 0.8, ma = 0.2), xreg =

chi nd(1, data$Torque))

zap.sm 1. ARl MA r es<-

ari ma. di ag(zap. sm 1, pl ot =F) $st d.
resid

fifth << zap.sm 1. ARI MA. res

== 6) {

zap.sm 2<-

ari ma. m e(dat a$sm 2, nodel =

l[ist(ar = 0.8, m = 0.2), xreg =

cbind(1, data$Torque))

zap.sm 2. ARl MA. r es<-

ari ma. di ag(zap. sm 2, pl ot =F) $st d.
resid

sixth <- zap.sm 2. ARI MA. res

== 7) {

zap. si gAvg. r ms<-

ari ma. m e(dat a$si gAvg. r s, nodel =
list(ar = 0.8, ma = 0.2), xreg
cbi nd(1, data$Torque))

zap. si gAvg. rims. ARI MA. r es<-

ari ma. di ag(zap. si gAvg. r ns, pl ot =F) $st d.
resid

sevent h<- zap. si gAvg. rns. ARI MA. res

NewCl Name<- past e(" NewCl . ", i.txt,
LM, j.txt, sep = "")

NewCl <- matri x(c(first, second,
third, fourth, fifth, sixth, seventh),
ncol = 7)

assi gn( NewCl Nane, NewCl , where = 1)
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5. make. mahanew functi on

function(gears, tails, nanme.only = F)

{

make. maha: conpute Mahal anobi s di stance for
particul ar gear and tail nunber

Argunent s:

gears: vector of character string with nane of gear

tails: vector of character string with tail nunber

nane.only: if TRUE, just return condensed version of #
anme

HOSHFHHFHHHH

# Construct name of data set, then go get it

#

i f(mssing(gears)||mnmssing(tails))
stop("Both argunents nust be supplied!")

i f(name. onl y&&(I engt h(gears)>1||length(tails) > 1))
stop("Not set up for vectorized nanes!")

for(i in 1l:length(gears)) {
i.txt <- gears[i]

i f(substring(i.txt, 1, 1) == "#")
i.txt <- substring(i.txt, 2, nchar(i.txt))

i f(substring(i.txt, 9, 9) == "#")
i.txt <- paste(substring(i.txt, 1, 8),
substring(i.txt, 10, nchar(i.txt)), collapse =
")

i.txt <- unlist(unpaste(i.txt, sep =" "))

P.otxt <- d.txt[i.txt I=""]

i.txt <- paste(i.txt, collapse ="")

for(j in 1l:length(tails)) {
j.txt <- tails[j]
#
# Construct the nanes of the things to be
# saved ("maha") and the data ("NewCl")
#
maha. nnx- paste(" Maha. ", i.txt,
i f (nane. only)
ret urn( maha. nm
dat a. nnk- paste("NewCl . ",i.txt,".",j.txt,
sep="")
i f(!exists(data.nm)
stop(paste("No data set naned", data.nm)

n

L)L txt, sep="")

#

# It exists. Go get it.

#

data <- get(data.nnm

#

# If it's character data, fix it
#
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if(is.character(data))
dat a<-matri x(as. nunmeric(data), ncol =
ncol (data))
#
# Conpute columm-wi se neans, assenble into a #
px1l row nmatrix
#
m <- apply(data, 2, mean, na.rm=T)
m<- matrix(m nrow = 1)
#
# Conpute (x - nmean) by replicating nmean as #
necessary
#
th <- data - nfrep(1, nrowmdata)), ]
# (x - nmean(x))
# Conpute covariance matri x, get Maha
# di stance
#
vmat <- var(data, na.nmethod = "omt")
maha <- diag(th W% vmat %%t (th))
assi gn(mha. nm naha, where = 1)
}

}

return(invisible())

ret ur n( maha)

6. make. maha. anal ysi s function

function(maha, delete.extremes = 0.999999)
{
i f(m ssing(maha))
st op(" Mahal anobi s argunent nust be supplied!")
#
# Strip off that |eading NA
if(is.na(mahal[1]))
maha <- nmahal -1]

If "delete.extrenmes" is TRUE, cut off any distances
nore extrene than the "del ete.extrenme" th

percent age point of the exponential. By default it's
a percentage point; turn this off by passing "FALSE. "

HHHHHH

if(is.logical (delete.extremnmes)&_&del et e. extrenes==TRUE)

del ete. extrenes <- 0.999999

if(is.nuneric(delete.extrenes)) {
gof . save<-chi sq. gof (maha, di stri buti on = "exponential "
rate = 1/ (mean(maha)), n.paramest = 1)
cutoff <- gexp(del ete.extrenes, rate = 1/ nmean(naha))
num cut of f <- sum(maha > cutoff)
i f(numcutoff > 0) {
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war ni ng(paste("Cut off", numcutoff, "outliers in"
substitute(deparse(nmaha))), "; old p-value was

si gni f (gof . save$ p.value, 4), "\n")

maha <- nmaha[ maha <= cut of f]

}
}
final.chisqg<-chisq.gof(maha, distribution = "exponential",
rate = 1/ (nmean(nmaha)), n. paramest = 1)
final.ks <- ks.gof (maha, distribution = "exponential", rate

= 1/ (mean(naha)))

print(final.chisq)

print(final.ks)
return(c(final.chisqg$p.value,final.ks$p.value, num cutoff))
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APPENDI X B

are greater

The dark colored cells nean that

of 0.0002193.

than the Bonferroni

GOF TEST RESULTS FOR EXPONENTI AL
DI STRI BUTI ON USI NG BONFERRONI
CORRECTI ON

the related p-val ues

adj usted significance |evel

Index Mahalanobis Distance Name No Chi-Square gof KS gof
1 Maha. 2EngFCDr vShf t Spur . 162494 83 | 0.3748739000 | 0. 0791666800
1 Maha. 2EngFCDr vShf t Spur. 163075 34 | 0.3657477000 | 0. 5025112000
1 Maha. 2EngFCDr vShf t Spur . 163086 52 | 0.0012292210 | 0. 0439324800
1 Maha. 2EngFCDr v Shf t Spur . 164539 185 | 0. 0000498706 | 0. 0000038110
2 Maha. 2EngFr WhAShf t CanfGear . 162494 83 | 0.0369843500 [ 0. 6079170000
2 Maha. 2EngFr WhAShf t CantGear . 163075 34 | 0.0041954820 | 0. 0441714200
2 Maha. 2EngFr WhShf t Canteear . 163086 52 | 0.0340014000 | 0. 0438103100
2 Maha. 2EngFr WhShf t Canear . 164539 185 | 0.0000945735 [ 0. 0023453220
3 Maha. 2EngFr WhShf t Dr vSpur . 162494 83 | 0. 0033658590 | 0. 0170915500
3 Maha. 2EngFr WhAShf t Dr vSpur . 163075 34 | 0.0699241400 | 0.0161819700
3 Maha. 2EngFr WhAShf t Dr vSpur . 163086 52 | 0.3594478000 | 0. 4238913000
3 Maha. 2EngFr WAShf t Dr vSpur . 164539 185 | 0. 0000000350 | 0. 0000002973
4 Maha. 2EngFr WhShf t Spur . 162494 83 | 0.1479257000 | 0. 0016803680
4 Maha. 2EngFr WhAShf t Spur . 163075 34 | 0.3168349000 | 0. 6142077000
4 Maha. 2EngFr WaShf t Spur . 163086 52 | 0.0148596500 | 0. 0306954200
4 Maha. 2EngFr WhAShf t Spur . 164539 185 | 0. 0001565313 | 0. 0000727556
5 Maha. 2Engl npShf t Spur. 162494 83 | 0.1365716000 | 0. 3819240000
5 Maha. 2Engl npShf t Spur. 163075 34 | 0.0430359500 | 0. 0014587820
5 Maha. 2Engl npShf t Spur . 163086 52 ] 0.5114722000 | 0. 0958062800
5 Maha. 2Engl npShf t Spur. 164539 185 | 0. 0000000053 | 0. 0000003074
6 Maha. 2EngTachShf t Spur. 162494 83 | 0.0636493900 | 0. 1905592000
6 Maha. 2EngTachShf t Spur. 163075 34 | 0.0580401100 | 0. 0515810500
6 Maha. 2EngTachShf t Spur . 163086 52 | 0.1699629000 | 0. 6952633000
6 Maha. 2EngTachShf t Spur. 164539 185 | 0.0000218801 | 0. 0007740179
7 Maha. 2GenShft Spur. 162494 83 | 0.0637712400 | 0. 3091500000
7 Maha. 2GenShf t Spur. 163075 34 | 0.0480404400 | 0. 1267582000
7 Maha. 2GenShf t Spur. 163086 52 | 0.0954713500 | 0. 0223861700
7 Maha. 2GenShf t Spur . 164539 185 | 0.0015239180 | 0. 0040696120
8 Maha. 21 npShft Aft | dl er. 162494 83 | 0.0829717000 | 0. 3815830000
8 Maha. 21 npShf t Aft I dl er. 163075 34 | 0.4776873000 | 0. 5649648000
8 Maha. 21 npShft Aft 1 dl er. 163086 52 | 0. 0005505253 | 0. 2728207000
8 Maha. 21 npShft Aft 1 dl er. 164539 185 | 0.0007459824 | 0. 0095353930
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Index Mahalanobis Distance Name No Chi-Square gof KS gof
9 Maha. 21 npShft il dl er. 162494 83 | 0.1729916000 | 0. 1782416000
9 Maha. 2l npShft 1 dl er. 163075 34 | 0.1688859000 | 0. 2399904000
9 Maha. 21 npShft 1 dl er. 163086 52 | 0.4315571000 | 0. 3862667000
9 Maha. 21 npShft !l dl er. 164539 185 | 0.0000512785 | 0. 0396911700
10 | Maha. 2l npShft Pi n. 162494 83 [ 0.0019748370 | 0. 0022502640
10 | Maha. 21 npShft Pin. 163075 34 | 0.1688859000 | 0. 0535416900
10 | Maha. 2l npShft Pi n. 163086 52 | 0.5536479000 | 0. 2674302000
10 | Maha. 21 npShft Pi n. 164539 185 | 0.0106145300 | 0. 0187534900
11 Maha. AGBAct Shft I dl er. 162494 90 [ 0.1109026000 | 0.1122277000
11 Maha. AGBAct Shft I dl er. 163075 39 [ 0.0298144600 | 0. 2070951000
11 Maha. AGBAct Shft | dl er. 163086 38 | 0.2916541000 | 0. 3702179000
11 Maha. AGBAct Shft | dl er. 164539 216 | 0. 0056000150 | 0. 1704107000
12 | Maha. AGBAct Shf t Spur. 162494 90 | 0.0400923300 | 0.2174343000
12 | Maha. AGBAct Shf t Spur. 163075 39 | 0.2969329000 | 0. 3026031000
12 | Maha. AGBAct Shf t Spur. 163086 38 | 0.0385024600 | 0. 0033220030
12 | Maha. AGBAct Shf t Spur. 164539 216 | 0. 0009973003 | 0. 0108290100
13 | Maha. AGBDr vShf t Gear . 162494 90 | 0.1105259000 | 0. 1543901000
13 | Maha. AGBDr vShf t Gear . 163075 39 [ 0.8648678000 | 0. 9787855000
13 | Maha. AGBDr vShf t Gear . 163086 38 | 0.2213292000 | 0. 3685031000
13 | Maha. AGBDr vShf t Gear . 164539 216 | 0. 0026133800 | 0. 1420335000
14 | Maha. AGBDr vShf t Spur. 162494 90 | 0.0366537800 | 0. 5991601000
14 | Maha. AGBDr vShf t Spur. 163075 39 | 0.4798044000 | 0. 9160088000
14 | Maha. AGBDr vShf t Spur. 163086 38 [ 0.1218870000 | 0. 1098200000
14 | Maha. AGBDr vShf t Spur. 164539 216 | 0.0031395750 | 0. 0425268100
15 | Maha. AGBEngSt rt Shf t Spur. 162494 90 | 0.0000286636 | 0. 0041275020
15 | Maha. AGBEngSt rt Shf t Spur. 163075 39 [ 0.2272758000 | 0. 7600296000
15 | Maha. AGBEngSt rt Shf t Spur. 163086 38 | 0.3774363000 | 0.3392619000
15 | Maha. AGBEngSt rt Shf t Spur. 164539 216 | 0. 0245094900 | 0. 0650491900
16 | Maha. AGBGenl1Shft Spur. 162494 90 | 0.0039748860 | 0. 1567953000
16 | Maha. AGBGen1Shft Spur. 163075 39 | 0.3812781000 | 0. 6079638000
16 | Maha. AGBGen1Shft Spur. 163086 38 | 0.0009150034 | 0. 0127535200
16 | Maha. AGBGen1Shft Spur. 164539 216 | 0. 0025338340 | 0. 0306988000
17 | Maha. AGBGen3Shf t Spur. 162494 90 | 0.0006621484 | 0. 0319469700
17 | Maha. AGBGen3Shft Spur. 163075 39 [ 0.2603022000 | 0. 4511475000
17 | Maha. AGBGen3Shft Spur. 163086 38 | 0.2546023000 | 0. 0899478600
17 | Maha. AGBGen3Shf t Spur. 164539 216 | 0.0001620264 | 0. 0218363500
18 | Maha. AGBOPShf t Spur. 162494 90 | 0.0192180900 | 0. 0281025400
18 | Maha. AGBOPShf t Spur. 163075 39 [ 0.4288799000 | 0. 6370583000
18 | Maha. AGBOPShf t Spur. 163086 38 | 0.2213292000 | 0. 6146984000
18 | Maha. AGBOPShf t Spur. 164539 216 | 0.0245094900 | 0. 0747140200
19 | Maha. AGBSt g2Sr vPnpShf t Spur. 163075 39 | 0.1480693000 | 0. 2531048000
19 | Maha. AGBSt g2Sr vPnpShf t Spur. 163086 38 | 0.2213292000 | 0. 4064030000
19 | Maha. AGBSt g2Sr vPnpShf t Spur. 164539 216 | 0. 0000621991 | 0. 0136492000
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Index Mahalanobis Distance Name No Chi-Square gof KS gof
20 | Maha. AGBUt PnpShft Spur. 162494 90 | 0.2342394000 | 0.4256110000
20 | Maha. AGBUt PnpShft Spur. 163075 39 | 0.2969329000 | 0. 5324835000
20 | Maha. AGBUt PnpShft Spur. 163086 38 [ 0.1041706000 | 0. 3052580000
20 | Maha. AGBUt PnpShft Spur. 164539 216 | 0. 0130552000 | 0. 1373432000
21 Maha. AGBWhPnpShf t Spur. 162494 90 | 0.0800294500 | 0. 6985457000
21 Maha. AGBWhPnpShf t Spur. 163075 39 [ 0.2969329000 | 0. 3709352000
21 Maha. AGBWhPnpShft Spur. 163086 38 | 0.0025404140 | 0. 2168790000
21 Maha. AGBWhPnmpShf t Spur. 164539 216 | 0. 0000010566 | 0. 0000018322
22 | Maha. AuxLbVnPrmpShf t Bl ades. 162494 64 | 0.0261544000 | 0. 0529617500
22 | Maha. AuxLbVnPrpShf t Bl ades. 163086 23 | 0.3062189000 | 0. 3174911000
22 Maha. AuxLbVnPnpShft Bl ades. 164539 68 | 0.0013595550 [ 0. 0071380010
23 | Maha. AuxLbVnPnpShft Gear. 162494 64 | 0.0520471600 | 0. 2971274000
23 | Maha. AuxLbVnPnpShf t Gear . 163086 23 | 0.4500622000 | 0. 3625316000
23 | Maha. AuxLbVnPnpShf t Gear . 164539 68 | 0.0052367110 | 0. 0486329300
24 | Maha. G ndSt g1Ri ng. 162494 64 | 0.3959118000 | 0. 2298150000
24 | Maha. G ndSt g1Ri ng. 163086 23 | 0.9077655000 | 0. 8541475000
24 | Maha. G ndSt g1R ng. 164539 68 | 0.0179124000 | 0. 3808594000
25 | Maha. G ndSt g2Ri ng. 162494 64 | 0.2856284000 | 0. 7498076000
25 | Maha. G ndSt g2Ri ng. 163086 23 | 0.1286267000 | 0. 5020362000
25 | Maha. G ndSt g2Ri ng. 164539 68 | 0.0821774600 | 0. 0777073500
26 | Maha. | GBIl npShft Pi n. 162494 19 ([ 0.1005221000 | 0.2943942000
26 | Maha. | GBI npShft Pi n. 163086 20 | 0.1246928000 | 0. 4000300000
27 | Maha. | GBQut Shft Gear . 162494 173 | 0. 0000460976 | 0. 0002195990
27 | Maha. | GBBQut Shft Gear. 163075 80 | 0.1425494000 | 0. 0588983300
27 | Maha. | GBQut Shf t Gear . 163086 147 | 0. 0000000000 | 0. 0000002919
27 | Maha. | GBBQut Shft Gear . 164539 296 | 0.0746511600 | 0. 2949536000
28 | Maha. | GBQut Shf t PunpBIl ades. 162494 173 | 0. 0000529905 | 0. 0001117883
28 | Maha. | GBQut Shf t PunpBIl ades. 163075 80 | 0.1425494000 | 0. 3137684000
28 | Maha. | GBBQut Shf t PunpBl ades. 163086 147 | 0.0001247872 | 0. 0000183008
28 | Maha. | GBQut Shf t PunpBIl ades. 164539 296 | 0.0016775260 | 0. 0146860100
29 | Maha. Mai nRt r Shf t OPSpur . 162494 64 | 0.0001068427 | 0. 0040404190
29 | Maha. Mai nRt r Shf t OPSpur . 163086 23 | 0.3062189000 | 0. 9158680000
29 | Maha. Mai nRtr Shf t OPSpur . 164539 68 | 0.0200847200 | 0. 0481922700
30 | Maha. Mai nRtr TachShf t Spur. 162494 83 | 0.1166787000 | 0. 0409124800
30 | Maha. Mai nRt r TachShf t Spur. 163075 34 | 0.0326580900 | 0. 7861486000
30 | Maha. Mai nRt r TachShf t Spur. 163086 52 | 0.6845130000 | 0. 7474594000
30 | Maha. Mai nRtr TachShf t Spur. 164539 185 | 0.1072321000 | 0. 0692328500
31 Maha. G | Cool Shft Spur. 162494 83 | 0.0104796900 | 0. 0701250500
31 Maha. G | Cool Shft Spur. 163075 34 | 0.3168349000 | 0. 2736407000
31 Maha. G | Cool Shft Spur. 163086 52 | 0.1724879000 | 0. 0271953700
31 Maha. G | Cool Shft Spur. 164539 185 | 0.0811854500 | 0. 0747964600
32 | Maha. Qut er Shaf t Mai nBev. 162494 64 | 0.3109492000 | 0. 4856828000
32 | Maha. Qut er Shaf t Mai nBev. 163086 23 | 0. 0233787700 | 0. 1957528000
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32 | Maha. Qut er Shaf t Mai nBev. 164539 68 | 0.1480942000 | 0. 3900619000
33 | Maha. Qut er Shaft SunCGear. 162494 64 | 0.5991661000 | 0. 3332178000
33 | Maha. Qut er Shaf t SunGear . 163086 23 | 0.4500622000 | 0. 2655298000
33 | Maha. Qut er Shaf t SunCear. 164539 68 | 0.0150263200 | 0. 0170488000
34 | Maha. Port Aft | npDr vShf t ACCPi . 162494 147 | 0.0219083200 | 0. 0141299400
34 | Maha. Port Aft | npDr vShft ACCPi . 163075 78 | 0.0709423700 | 0. 3166578000
34 | Maha. Port Aft | npDr vShf t ACCPi . 163086 113 | 0.0019700140 | 0. 2014757000
34 | Maha. Port Aft | npDr vShft ACCPi . 164539 271 | 0. 0000000387 | 0. 0001546579
35 | Maha. Port Aft 1 npDrvShftPin. 162494 64 | 0.0995602000 | 0. 0371758200
35 | Maha. Port Aft | npDrvShft Pi n. 163086 23 | 0. 4500622000 | 0. 4384801000
35 | Maha. Port Aft | npDrvShft Pin. 164539 68 | 0.4666952000 | 0. 2765908000
36 | Maha. Port NGBEngl npShft Pi n. 162494 147 | 0.2535967000 | 0. 0164562100
36 | Maha. Port NGBEng! npShft Pi n. 163075 78 | 0.0188582600 | 0. 0114002600
36 | Maha. Port NGBEngl npShft Pi n. 163086 113 | 0.0348115800 | 0. 0067354960
36 | Maha. Port NGBEngl npShft Pi n. 164539 271 | 0.1258339000 | 0. 0063320690
37 | Maha. Por t NGBFCDr vShf t Gear . 162494 90 | 0.0035879460 | 0. 0186399300
37 | Maha. Port NGBFCDr vShf t Gear . 163075 39 | 0.3325939000 | 0. 3163830000
37 | Maha. Port NGBFCDr vShft Gear . 163086 38 | 0.4782304000 | 0. 9824403000
37 | Maha. Port NGBFCDr vShf t Gear . 164539 216 | 0. 0062491490 | 0. 0002623695
38 | Maha. Port NGBFCDr vShft LHZer | . 162494 90 | 0.0943744600 | 0. 1783191000
38 | Maha. Port NGBFCDr vShft LHZer | . 163075 39 | 0.5334521000 | 0. 5918447000
38 | Maha. Port NGBFCDr vShf t LHZer | . 163086 38 | 0.2546023000 | 0. 7759360000
38 | Maha. Port NGBFCDr vShf t LHZer | . 164539 216 | 0.0000611931 | 0. 0000458461
39 | Maha. Port NGBFCDvnShft LHZer | . 162494 90 | 0.0005328204 | 0. 0000846702
39 | Maha. Port NGBFCDvnShft LHZer | . 163075 39 [ 0.8221806000 | 0. 8943008000
39 | Maha. Port NGBBFCDvnShft LHZer | . 163086 38 | 0.7092986000 | 0. 5676922000
39 | Maha. Port NGBBFCDvnShft LHZer | . 164539 216 | 0. 0386258400 | 0. 1650291000
40 | Maha. Port NGBOPDr vShft Spur. 162494 90 | 0.1109026000 | 0.5885142000
40 | Maha. Port NGBOPDr vShft Spur. 163075 39 [ 0.4260713000 | 0. 9965774000
40 | Maha. Port NGBOPDr vShft Spur. 163086 38 | 0.0887824000 | 0. 0401910400
40 | Maha. Port NGBOPDr vShft Spur. 164539 216 | 0. 0000000000 | 0. 0000002919
41 Maha. Por t NGBQut Shf t ACCSpur . 162494 147 | 0.0248275200 | 0. 2222217000
41 Maha. Por t NGBQut Shf t ACCSpur . 163075 78 | 0.0000120340 | 0. 0056900410
41 Maha. Por t NGBQut Shf t ACCSpur . 163086 113 | 0.0011579580 | 0. 0005197010
41 Maha. Por t NGBQut Shf t ACCSpur . 164539 271 | 0.0724376400 | 0. 3204947000
42 | Maha. Por t NGBQut Shf t Gear . 162494 147 | 0.0264978700 | 0. 2391644000
42 | Maha. Port NGBQut Shf t Gear . 163075 78 | 0.0089832700 | 0. 0005709405
42 | Maha. Por t NGBQut Shf t Gear . 163086 113 | 0. 0000204813 [ 0. 0000048697
42 | Maha. Por t NGBQut Shf t Gear . 164539 271 | 0.0731116000 | 0. 0007343518
43 | Maha. Port NGBTachShft Spur. 162494 90 | 0.0366537800 | 0. 1025068000
43 | Maha. Port NGBTachShft Spur. 163075 39 | 0.8722260000 | 0. 6554800000
43 | Maha. Port NGBTachShft Spur. 163086 38 [ 0.1218870000 | 0. 0103405600
43 | Maha. Port NGBTachShft Spur. 164539 216 | 0. 0000000000 | 0. 0000002919
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44 | Maha. RrCovidl er Shftldl er. 162494 83 | 0.0000337472 | 0. 0000080497
44 | Maha. RrCovidl er Shftldl er. 163075 34 | 0.4194763000 | 0. 2027049000
44 | Maha. RrCovidl er Shftldl er. 163086 52 | 0.3591061000 | 0. 7727719000
44 | Maha. RrCovidl er Shftldl er. 164539 185 | 0. 0000000195 | 0. 0000003229
45 | Maha. SnpRot PmpShf t Bl ades. 162494 64 | 0.0581608200 | 0. 3562893000
45 | Maha. SnpRot PnpShf t Bl ades. 163086 23 [ 0.2011345000 | 0. 4502288000
45 | Maha. SnpRot PpShf t Bl ades. 164539 68 | 0.0168386900 | 0. 1265429000
46 | Maha. SnpRot PnpShf t Gear . 162494 64 | 0.0909359800 | 0. 1115068000
46 | Maha. SnpRot PnpShf t Gear . 163086 23 | 0.2491190000 | 0. 6280054000
46 | Maha. SnpRot PnpShft Gear . 164539 68 | 0.0761383800 | 0. 0684803000
47 | Maha. St bdAf t | npDrvShft Pi n. 162494 64 | 0.0053022850 | 0. 0474350100
47 | Maha. St bdAft | npDrvShft Pi n. 163086 23 [ 0.1613175000 | 0. 7514104000
47 | Maha. St bdAft | npDrvShft Pi n. 164539 68 | 0.4358976000 | 0. 1771743000
48 | Maha. St bdNGBEngl npShft Pi n. 162494 147 | 0.0000048610 [ 0. 0006049340
48 | Maha. St bdNGBEngl npShft Pi n. 163075 78 | 0.0001173497 | 0. 0002072291
48 | Maha. St bdNGBEngl npShf t Pi n. 163086 113 [ 0.0012476810 | 0. 1539161000
48 | Maha. St bdNGBEngl npShf t Pi n. 164539 271 | 0. 0000440885 | 0. 0000395430
49 | Maha. St bdNGBFCDr vShf t Gear . 162494 90 | 0.6208552000 | 0. 7571400000
49 | Maha. St bdNGBFCDr vShf t Gear. 163075 39 [ 0.1480693000 | 0. 0486905700
49 | Maha. St bdNGBFCDr vShf t Gear. 163086 38 | 0.0754701900 | 0. 1372257000
49 | Maha. St bdNGBFCDr vShf t Gear . 164539 216 | 0. 0095454600 | 0. 0036564800
50 | Maha. St bdNGBOPDr vShf t Spur. 162494 90 | 0.4632375000 | 0. 3308799000
50 | Maha. St bdNGBOPDr vShft Spur. 163075 39 | 0.2272758000 | 0. 1876801000
50 | Maha. St bdNGBOPDr vShft Spur. 163086 38 | 0.4782304000 | 0. 3899293000
50 | Maha. St bdNGBOPDr vShft Spur. 164539 216 | 0.0231873300 | 0. 0004167416
51 Maha. St bdNGBQut Shft Pi n. 162494 147 | 0.0000952857 | 0. 0000941570
51 Maha. St bdNGBQut Shft Pi n. 163075 78 | 0.3298978000 | 0. 9418615000
51 Maha. St bdNGBQut Shf t Pi n. 163086 113 | 0.3007083000 | 0. 0625590400
51 Maha. St bdNGBQut Shf t Pi n. 164539 271 | 0. 0000540052 | 0. 0000003801
52 | Maha. St bdNGBTachShf t Spur. 162494 90 | 0.0060790820 | 0. 0756782300
52 | Maha. St bdNGBTachShf t Spur. 163075 39 [ 0.6471191000 | 0. 3443324000
52 | Maha. St bdNGBTachShf t Spur. 163086 38 | 0.2916541000 | 0. 0624214400
52 | Maha. St bdNGBTachShf t Spur. 164539 216 | 0.0036782130 | 0. 0021731880
53 | Maha. St glHydPnpShft Spur. 162494 83 | 0.0141408600 | 0. 2324533000
53 | Maha. St g1HydPnpShf t Spur. 163075 34 | 0.5397494000 | 0. 3713293000
53 | Maha. St glHydPnpShft Spur. 164539 185 | 0.0431039200 | 0. 1071620000
54 | Maha. St g1Pl nt Shft Gear. 162494 64 | 0.1353007000 | 0. 0868184400
54 | Maha. St g1Pl nt Shft Gear. 163086 23 | 0.2491190000 | 0. 6823691000
54 | Maha. St g1Pl nt Shft Gear. 164539 68 | 0.1026168000 | 0. 0334438000
55 | Maha. St g2PI nt Shft Gear . 162494 64 | 0.0330268900 | 0. 0175327600
55 | Maha. St g2PI nt Shft Gear. 163086 23 | 0.3062189000 | 0. 2805596000
55 | Maha. St g2Pl nt Shft Gear. 164539 68 | 0.1368143000 | 0. 2409825000
56 | Maha. St g2SunShft Gear. 162494 64 | 0.0805968300 | 0. 1295930000
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56 | Maha. St g2SunShf t Gear . 163086 23 | 0.1286267000 | 0. 3223521000
56 | Maha. St g2SunShft Gear . 164539 68 | 0.0019751810 [ 0. 0828582000
57 Maha. TRTakeof f Shf t Spur. 162494 345 | 0. 0000000030 | 0. 0000003194
57 Maha. TRTakeof f Shft Spur. 163075 141 | 0.0000603434 | 0. 0018286950
57 | Maha. TRTakeof f Shft Spur. 163086 235 | 0. 0002357552 | 0. 0001431754
57 Maha. TRTakeof f Shft Spur. 164539 565 | 0. 0000000000 | 0. 0000002932
58 | Maha. TGBI npShft Gear . 162494 19 | 0.2955570000 | 0. 5046692000
59 Maha. TGBI npShft Pi n. 162494 19 0. 5818332000 | 0. 8910370000
60 | Maha. TGBO | PnpShft Bl ades. 162494 19 | 0.2955570000 | 0. 2851809000
60 Maha. TGBQ | PnpShft Bl ades. 163086 20 0. 7404781000 | 0. 8606168000
61 Maha. TGBG | PmpShft Gear. 162494 19 0. 3765676000 | 0. 4244366000
61 Maha. TGBO | PmpShf t Gear . 163086 20 | 0.5195206000 [ 0. 2929667000
62 Maha. T@GQut Shft Gear . 162494 173 | 0. 0000062168 | 0. 0000383685
62 Maha. T@GQut Shft Gear . 163075 80 0. 1425494000 | 0. 0092620290
62 | Maha. TGBCQut Shf t Gear . 163086 147 | 0. 0000000418 | 0. 0000286994
62 Maha. TGBQut Shft Gear . 164539 296 | 0. 0633566000 | 0. 7861269000
63 | Maha. TTO dl er Shaft | dl er Spur. 162494 345 | 0. 0000001031 | 0. 0000073137
63 | Maha. TTO dl er Shaft | dl er Spur. 163075 141 | 0.0105821400 | 0. 0096087650
63 | Maha. TTO dl er Shaft | dl er Spur. 163086 235 | 0.0014733450 | 0. 0475561100
63 Maha. TTA dl er Shaft | dl er Spur. 164539 565 | 0. 0000000000 | 0. 0000006539
Table 7. Goodness of Fit Test Results for Exponential

Di stribution Using Bonferroni
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APPENDI X C  WARNI NG AND ALARM THRESHCOLD LEVELS

THRESHOLD
GEAR NAME TAIL NUMBER | WARNING ALARM
#2 Eng F C Drv Shft Spur 162494 87. 887 175.774
#2 Eng F C Drv Shft Spur 163075 81. 888 163. 777
#2 Eng F C Drv Shft Spur 163086 80. 927 161. 854
#2 Eng FrWh Shft Cam Gear 162494 77.459 154. 918
#2 Eng Frwh Shft Cam Gear 163075 87. 868 175. 736
#2 Eng FrwWh Shft Cam Gear 163086 84. 500 169. 000
#2 Eng FrWh Shft Cam Gear 164539 75. 094 150. 188
#2 Eng Fr\Wh Shft Drv Spur 162494 106. 877 213. 755
#2 Eng Frwh Shft Drv Spur 163075 95. 255 190. 509
#2 Eng Frwh Shft Drv Spur 163086 105. 643 211. 285
#2 Eng FrwWh Shft Drv Spur 162494 105. 091 210. 182
#2 Eng FrwWh Shft Drv Spur 163075 77.942 155. 883
#2 Eng Frwh Shft Drv Spur 163086 82. 881 165. 761
#2 Eng Inp Shft Spur 162494 121.918 243. 835
#2 Eng Inp Shft Spur 163075 154. 378 308. 755
#2 Eng Inp Shft Spur 163086 108. 283 216. 567
#2 Eng Tach Shft Spur 162494 85. 158 170. 317
#2 Eng Tach Shft Spur 163075 106. 152 212. 305
#2 Eng Tach Shft Spur 163086 104. 602 209. 205
#2 Eng Tach Shft Spur 164539 84. 834 169. 668
#2 Gen Shft Spur 162494 73. 849 147. 698
#2 Gen Shft Spur 163075 105. 301 210. 601
#2 Gen Shft Spur 163086 93. 128 186. 256
#2 Gen Shft Spur 164539 91. 362 182. 723
#2 Inp Shft Aft ldler 162494 80. 911 161. 821
#2 Inp Shft Aft ldler 163075 98. 821 197. 642
#2 Inp Shft Aft ldler 163086 74. 685 149. 371
#2 Inp Shft Aft ldler 164539 68. 484 136. 968
#2 Inp Shit Idler 162494 94. 419 188. 838
#2 Inp Shft Idler 163075 115. 084 230. 167
#2 Inp Shft ldler 163086 87. 307 174. 615
#2 Inp Shft Idler 164539 80. 806 161. 612
#2 Inp Shft Pin 162494 127. 066 254,133
#2 Inp Shft Pin 163075 124. 458 248. 915
#2 Inp Shft Pin 163086 126. 940 253. 881
#2 Inp Shft Pin 164539 92.120 184. 239
AGB Act sShft Idler 162494 89. 184 178. 368
AGB Act Shft Idler 163075 76. 160 152. 320
AGB Act Shft Idler 163086 86. 037 172.073
AGB Act Shft Idler 164539 73.954 147. 907
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GEAR NAME TAIL NUMBER | WARNING ALARM
AGB Act Shft Spur 162494 82. 259 164. 518
AGB Act Shft Spur 163075 122. 253 244,507
AGB Act Shft Spur 163086 119. 947 239. 894
AGB Act Shft Spur 164539 76. 829 153. 659
AGB Drv Shft GCear 162494 76. 835 153. 669
AGB Drv Shft GCear 163075 107. 125 214. 250
AGB Drv Shft GCear 163086 93. 148 186. 295
AGB Drv Shft GCear 164539 85. 585 171.170
AGB Drv Shft Spur 162494 89. 687 179. 374
AGB Drv Shft Spur 163075 99. 513 199. 026
AGB Drv Shft Spur 163086 109. 734 219. 468
AGB Drv Shft Spur 164539 99. 164 198. 328
AGB Eng Strt Shft Spur 162494 64. 040 128. 080
AGB Eng Strt Shft Spur 163075 89. 406 178. 812
AGB Eng Strt Shft Spur 163086 81. 641 163. 281
AGB Eng Strt Shft Spur 164539 85. 205 170. 409
AGB Gen #1 Shft Spur 162494 78. 054 156. 108
AGB Gen #1 Shft Spur 163075 86. 926 173. 851
AGB Gen #1 Shft Spur 163086 76. 632 153. 264
AGB Gen #1 Shft Spur 164539 72. 800 145. 600
AGB Gen #3 Shft Spur 162494 78. 310 156. 619
AGB Gen #3 Shft Spur 163075 83. 297 166. 594
AGB Gen #3 Shft Spur 163086 80. 509 161. 017
AGB Gen #3 Shft Spur 164539 71.327 142. 654
AGB O P Shft Spur 162494 65. 855 131. 711
AGB O P Shft Spur 163075 97.878 195. 756
AGB O P shft Spur 163086 85. 815 171. 629
AGB O P Shft Spur 164539 80. 545 161. 089
AGB Stg2 Srv Pnp Shft Spur 163075 81. 008 162. 016
AGB Stg2 Srv Pnp Shft Spur 163086 89. 387 178. 774
AGB Stg2 Srv Pnp Shft Spur 164539 86. 943 173. 886
AGB U Pnp Shft Spur 162494 73. 659 147. 317
AGB U Pnp Shft Spur 163075 92. 068 184. 136
AGB Ut Pnp Shft Spur 163086 100. 069 200. 138
AGB Ut Pnp Shft Spur 164539 79. 165 158. 330
AGB Weh Pnp Shft Spur 162494 92. 945 185. 890
AGB Weh Pnp Shft Spur 163075 91. 347 182. 694
AGB Weh Pnp Shft Spur 163086 111. 340 222.680
Aux Lb Vn Pnp Shft Bl ades 162494 70. 706 141. 412
Aux Lb Vn Pnp Shft Bl ades 163086 74. 667 149. 334
Aux Lb Vn Pnp Shft Bl ades 164539 75. 454 150. 909
Aux Lb Vn Pnp Shft Gear 162494 68. 671 137. 342
Aux Lb Vn Pnp Shft GCear 163086 82. 445 164. 891
Aux Lb Vn Pnp Shft Gear 164539 73. 366 146. 732
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Gnd Stg 1 Ring 162494 126. 197 252. 394
Gnd Stg 1 Ring 163086 107. 926 215. 852
Gnd Stg 1 Ring 164539 104. 857 209. 714
Gnd Stg 2 Ring 162494 94.023 188. 047
Gnd Stg 2 Ring 163086 86. 832 173. 665
Gnd Stg 2 Ring 164539 76. 246 152. 492
IGB Inp Shft Pin 162494 153. 372 306. 745
IGB Inp Shft Pin 163086 102. 281 204. 561
|G Qut Shft GCear 163075 122. 761 245,521
| GB Qut Shft Gear 164539 90. 691 181. 382
IGB Qut Shft Punp Bl ades 163075 107. 090 214.180
I GB Qut Shft Punp Bl ades 164539 81. 243 162. 486
Main Rtr Shft OP Spur 162494 91.471 182. 943
Main Rtr Shft OP Spur 163086 105. 649 211. 297
Main Rtr Shft OP Spur 164539 78. 317 156. 634
Main Rtr Tach Shft Spur 162494 93. 856 187. 711
Main Rtr Tach Shft Spur 163075 88. 492 176. 984
Main Rir Tach Shft Spur 163086 107. 083 214. 165
Main Rtr Tach Shft Spur 164539 94. 542 189. 083
G| Cool Shft Spur 162494 57. 687 115. 373
G| Cool Shft Spur 163075 88. 019 176. 037
O | Cool Shft Spur 163086 118. 071 236. 141
Q| Cool Shft Spur 164539 103. 964 207. 929
Quter Shaft Main Bev 162494 128. 397 256. 793
Quter Shaft Main Bev 163086 99. 226 198. 452
Quter Shaft Main Bev 164539 97. 479 194. 959
Quter Shaft Sun Gear 162494 98. 550 197. 100
Quter Shaft Sun Gear 163086 117. 402 234. 805
Quter Shaft Sun Gear 164539 86. 412 172. 823
Port Aft Inp Drv Shft ACC Pi 162494 65. 226 130. 451
Port Aft Inp Drv Shft ACC Pi 163075 82.126 164. 253
Port Aft Inp Drv Shfit ACC Pi 163086 62. 519 125. 037
Port Aft Inp Drv Shft Pin 162494 176. 083 352. 165
Port Aft Inp Drv Shft Pin 163086 115. 667 231. 334
Port Aft Inp Drv Shft Pin 164539 142. 257 284.514
Port NGB Eng Inp Shft Pin 162494 116. 989 233.978
Port NGB Eng Inp Shft Pin 163075 126. 625 253. 251
Port NGB Eng Inp Shft Pin 163086 88. 253 176. 505
Port NGB Eng Inp Shft Pin 164539 93. 199 186. 398
Port NGB F C Drv Shft Gear 162494 82.212 164. 423
Port NGB F C Drv Shft Gear 163075 152. 383 304. 766
Port NGB F C Drv Shft Gear 163086 84. 661 169. 322
Port NGB F C Drv Shft Gear 164539 122. 758 245. 516
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GEAR NAME TAIL NUMBER | WARNING ALARM
Port NGB F C Drv Shft LH Zerl 162494 80. 069 160. 138
Port NGB F C Drv Shft LH Zerl 163075 104. 075 208. 149
Port NGB F C Drv Shft LH Zerl 163086 78.103 156. 206
Port NGB F C Dvn Shft LH Zerl 162494 104. 766 209. 532
Port NGB F C Dvn Shft LH Zerl 163075 132.108 264. 217
Port NGB F C Dvn Shft LH Zerl 163086 82. 404 164. 809
Port NGB F C Dvn Shft LH Zerl 164539 86. 576 173. 153
Port NGB O P Drv Shft Spur 162494 110. 329 220. 658
Port NGB O P Drv Shft Spur 163075 170. 428 340. 855
Port NGB O P Drv Shft Spur 163086 106. 975 213. 951
Port NGB Qut Shft ACC Spur 162494 89. 195 178. 389
Port NGB Qut Shft ACC Spur 163075 88. 519 177. 039
Port NGB Qut Shft ACC Spur 163086 101. 779 203. 558
Port NGB Qut Shft ACC Spur 164539 74.920 149. 840
Port NGB Qut Shft Gear 162494 122.729 245, 457
Port NGB Qut Shft Gear 163075 104. 362 208. 724
Port NGB Qut Shft GCear 164539 85.718 171. 436
Port NGB Tach Shft Spur 162494 109. 157 218. 313
Port NGB Tach Shft Spur 163075 163. 493 326. 985
Port NGB Tach Shft Spur 163086 121.593 243. 186
Rr Cov Idler Shft Idler 163075 97. 377 194. 754
Rr Cov Idler Shft Idler 163086 79. 261 158. 521
Snp Rot Pnp Shft Bl ades 162494 72.580 145. 160
Smp Rot Pnp Shft Bl ades 163086 104. 873 209. 747
Snp Rot Pnp Shft Bl ades 164539 80. 353 160. 706
Snp Rot Pnp Shft Gear 162494 73. 926 147. 852
Snp Rot Pnp Shft Gear 163086 98. 650 197. 300
Snp Rot Pnp Shft Gear 164539 75. 347 150. 694
Stbd Aft Inp Drv Shft Pin 162494 82. 952 165. 904
Stbd Aft Inp Drv Shft Pin 163086 99. 848 199. 697
Stbd Aft Inp Drv Shft Pin 164539 131. 998 263. 997
Stbd NGB Eng Inp Shft Pin 162494 88. 123 176. 246
Stbd NGB Eng Inp Shft Pin 163086 109. 231 218. 461
Stbd NGB F C Drv Shft Gear 162494 73.778 147. 556
Stbd NGB F C Drv Shft Gear 163075 101. 009 202. 018
Stbd NGB F C Drv Shft GCear 163086 93. 446 186. 892
Stbd NGB F C Drv Shft Gear 164539 90. 709 181. 418
Stbd NGB O P Drv Shft Spur 162494 94. 256 188. 512
Stbd NGB O P Drv Shft Spur 163075 98. 499 196. 999
Stbd NGB O P Drv Shft Spur 163086 138. 161 276. 321
Stbd NGB O P Drv Shft Spur 164539 119. 092 238. 185
Stbd NGB Qut Shft Pin 163075 93. 032 186. 064
Stbd NGB Qut Shft Pin 163086 107. 960 215. 920
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THRESHOLD

GEAR NAME TAIL NUMBER | WARNING ALARM
Stbd NGB Tach Shft Spur 162494 99. 473 198. 945
Stbd NGB Tach Shft Spur 163075 104. 134 208. 268
Stbd NGB Tach Shft Spur 163086 138. 476 276. 952
St bd NGB Tach Shft Spur 164539 105. 081 210. 162
Stg 1 Hyd Pnmp Shft Spur 162494 75. 381 150. 761
Stg 1 Hyd Pnp Shft Spur 163075 89. 620 179. 240
Stg 1 Hyd Pnp Shft Spur 164539 93. 821 187. 641
Stg 1 Pint Shft Gear 162494 113. 529 227. 057
Stg 1 Pint Shft Gear 163086 106. 430 212. 861
Stg 1 PInt Shft Gear 164539 101. 408 202. 816
Stg 2 PInt Shft GCear 162494 108. 400 216. 800
Stg 2 PInt Shft Gear 163086 77.163 154. 327
Stg 2 PInt Shft Gear 164539 80. 559 161.118
Stg 2 Sun Shft Gear 162494 89. 453 178. 906
Stg 2 Sun Shft Gear 163086 97. 528 195. 056
Stg 2 Sun Shft Gear 164539 81.921 163. 843
T R Takeoff Shft Spur 163075 84. 947 169. 893
T R Takeof f Shft Spur 163086 84.517 169. 033
TGB Inp Shft Gear 162494 102. 241 204. 483
TGB Inp Shft Pin 162494 141. 919 283. 838
TG O| Pnp Shft Bl ades 162494 90. 062 180. 123
TGB G| Pnp Shft Bl ades 163086 95. 846 191. 692
TG G| Pnp Shft Gear 162494 77.453 154. 906
TGB Ol Pnp Shft Gear 163086 102. 383 204. 765
TGB Qut Shft Gear 163075 99. 003 198. 007
TGB Qut Shft Gear 164539 87.637 175. 275
TTO Idler Shaft Idler Spur 163075 93. 493 186. 985
TTO I dl er Shaft Idler Spur 163086 77.718 155. 437

Tabl e 8. Warning and Al arm Threshol d Level s
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